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Abstract—Playing a pre-recorded speech to gain illegal access
to Automatic Speaker Verification (ASV) system is one of the
easiest attacks to execute but difficult to detect. Such attacks
are called as replay attacks. Designing robust ASV systems from
such attacks motivates to explore signal processing framework
for Spoof Speech Detection (SSD). This paper exploits excitation
source-based information in the form of Linear Frequency
Residual Cepstral Coefficients (LFRCC) feature set for SSD task.
In the source-filter model of speech production, the excitation
source is also known to contain speaker-specific information. In
this context, the residual obtained from Linear Prediction (LP) of
speech is exploited in cepstral domain to detect replay attack. Im-
provements in results are obtained by choosing appropriate order
of LP, as the order of LP controls the amount of information
carried by the residual. Experiments performed on ASVSpoof
2019 Physical Access (PA) dataset using Gaussian Mixture Model
(GMM) and Convolutional Neural Network (CNN) show that
the optimal LP order is 8 which gives EER on the evaluation
set as 17.30% and 15.21% using GMM and CNN classifiers,
respectively.

Index Terms—Automatic Speaker Verification, Replay Attack,
Linear Prediction Residual, Linear Prediction Order, Gaussian
Mixture Model (GMM).

I. INTRODUCTION

Automatic Speaker Verification (ASV) systems or voice
biometric systems deal with verification of claimed identity of
speakers (which can be genuine or impostor), with the help of
machines [1]. Nevertheless, some impostors, other than zero-
effort impostors, deliberately try to fool the ASV system in
order to gain an unauthorized access. The deliberate attempts
made by the impostor (i.e., attacker) are called attacks. Such
illegal attempts which are at the microphone and transmission-
level, are called as spoofing attacks on ASV systems [2].
Among all the spoofing attacks (such as speech synthesis,
voice conversion, impersonation, twins, and replay [2]–[6]),
replay attacks are the simplest to execute but hard to detect.
Execution of replay attacks requires only a recording device to
record the speech sample of the genuine user. The attacker then
replays the pre-recorded speech later to fool the ASV system.
Hence, no technical knowledge is required to mount this kind
of attack, which makes it a significant threat to the security
of ASV system. Therefore, it is important to develop robust
Spoofed Speech Detection (SSD) systems that can effectively
detect the presence of a spoofed input to the ASV system.

The excitation source-based information is also known to
carry speaker-specific information [7]–[11]. The frequency
response characteristics of microphone, replay device, and
acoustic environment are bandpass in nature. Due to the band-
pass nature, the spectrum of the LP residual of replay speech
is expected to degrade for high frequency regions. The Linear
Prediction (LP) residual is known to capture discriminating
information for replay SSD task [12]–[15]. In this context,
according to proposition by Mallat [16], a function s(t) is
bounded and k times continuously differentiable with bounded
derivatives if ∫ +∞

−∞
|S(ω)|(1 + |ω|k)dω < +∞, (1)

where S(ω) ∈ L1(R) = Fs(t). It is known that the decay of
spectrum |S(ω)| of a signal s(t) depends on the worst singular
behaviour [16]. For example, in replay speech, the replay noise
has sudden discontinuities which are absent in genuine speech.
Hence, the spectrum of replay speech is decaying in nature
which is the discrimative cue for SSD task by the LFRCC
feature set [17].

For SSD task, the frequency spacing at higher frequencies
is sparse (such as in Mel-frequency warping). Therefore, to
consider the effect of replay mechanism on higher frequency
regions, we consider linear frequency scale in this work and
exploit linear subband energies in this paper. Furthermore, this
paper exploits recently proposed Linear Frequency Residual
Cepstral Coefficients (LFRCC) feature set for ASV spoof
2019 PA dataset. Unlike [17], we have analyzed the effect
of LP order on the residual. Furthermore, we have optimized
the value of LP order to 8. First, the optimization is done
empirically by framewise analysis of residual signal, and then
followed by experimentation done by varying LP order, using
traditional Gaussian Mixture Model (GMM)-based classifier,
and state-of-the-art Convolutional Neural Network (CNN).

II. LINEAR PREDICTION (LP) RESIDUAL

Linear prediction of speech has been widely used in
many applications, from speech coding to analyzing excitation
source-based information. Each speech sample s̃(n) is said to
be equal to the weighted sum of past p samples, where p is
the order of the linear predictor and the weights are called as
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Fig. 1: Plots of framewise magnitude spectrum |R(ω)| of the LP residual of genuine speech, for different values of LP order
p.

TABLE I: Log Spectral Distance (LSD) between LP residuals of speech signal (with Fs = 16 kHz) with various LP orders
(p).

p 2 4 6 8 10 12 14 16 18 20
2 0 1.35 2.19 2.46 2.64 2.81 2.97 3.06 3.17 3.23
4 1.35 0 1.42 1.74 1.97 2.16 2.34 2.44 2.55 2.61
6 2.19 1.42 0 0.79 1.08 1.31 1.51 1.63 1.75 1.82
8 2.46 1.74 0.79 0 0.63 0.95 1.20 1.33 1.47 1.54
10 2.64 1.97 1.08 0.63 0 0.62 0.94 1.09 1.24 1.32
12 2.81 2.16 1.31 0.95 0.62 0 0.62 0.82 1.00 1.10
14 2.97 2.34 1.51 1.20 0.94 0.62 0 0.47 0.71 0.83
16 3.06 2.44 1.63 1.33 1.09 0.82 0.47 0 0.49 0.65
18 3.17 2.55 1.75 1.47 1.24 1.00 0.71 0.49 0 0.38
20 3.23 2.61 1.82 1.54 1.32 1.10 0.83 0.65 0.38 0

Linear Prediction Coeffcients (LPCs), denoted by {αk}k∈[1,p]. Mathematically, this is represented as [15]:

s̃(n) = −
p∑

k=1

αks(n− k). (2)
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Fig. 2: Block diagram of LFRCC feature extraction. After [17].

The prediction error is called as the LP residual as shown in
eq. (3). It carries excitation source component of the speech
and it is given by [18].

r(n) = s(n)− s̃(n) = s(n) +

p∑
k=1

αks(n− k). (3)

The LP residual is obtained by the all-pole inverse filter A(z)
which is mathematically represented in eq. (4).

A(z) = 1 +

p∑
k=1

αkz
−k. (4)

Furthermore, replayed speech signal (sr(n)) can be expressed
as distributive property of convolution under the assumption
of LTI system, i.e.,

sr(n) =

[
−

p∑
k=1

αks(n− k) + r(n)

]
∗ hr(n), (5)

where ’*‘ indicates the convolution operation, and hr(n) is
the impulse response of the playback device used for replay
attack. Notably, the information carried by the LP residual
also depends on the LP order, p. A large value of order will
lead to good prediction of speech and hence, lower error (i.e.,
residual). However, for SSD task, our aim is not to have a
good prediction of speech, rather to exploit the residual at an
order optimally suited for SSD task. This is the novel aspect
of our work. Figure 1 shows waterfall plot of the magnitude
spectrum of the residual for varying order, p. It can been be
observed that the plot has highest |R(ω)| for p = 8. For
Figure 1, the speech sample taken into consideration had 16
kHz sampling frequency (Fs). This means that the optimum
prediction would be achieved at ((Fs/1000)+2), i.e., at order
p=18 [7]. However, for exploiting source-based information
for SSD task, the residual should have more information.
Hence, for p = 8, we can observe the optimal order for our
purpose. In addition, the Table I shows Log Spectral Distance
(LSD) between residuals of different LP orders. The LSD is
estimated as [19]

LSD =

√
1

2π

∫ π

−π

[
10log10

P (ω)

P̃ (ω)

]2
dω, (6)

where P (ω) and P̃ (ω) denote the two power spectra between
which LSD is estimated. The diagonal elements of Table I
are zero because the LSD between two identical signals is
zero. It can be observed that as we move from left to right
in the Table I, the LSD keeps on increasing. This also means
that the LP order p has a significant effect on the amount

of information carried by the LP residual. Furthermore, the
experimental results shown in the next Section also confirm
our hypothesis that LP order of 8 is optimal for SSD task.

III. EXPERIMENTAL SETUP

A. Dataset Used

Experiments are performed on the recently released and
statistically meaningful ASVspoof 2019 Physical Access (PA)
database, which is derived from VCTK corpus [20], [21].
It includes speech data from 107 speakers (46 males, 61
females). The dataset is divided into three subsets, namely,
training, development, and evaluation which contain speech
from 20 (8 male, 12 female), 10 (4 male, 6 female), and
48 (21 male, 27 female) speakers, respectively. The recording
conditions of training, development, and evaluation dataset are
identical. The spoof speech in training and development data is
from known attacks, i.e., generated with identical algorithms.
The evaluation set contains attacks generated with different
algorithms (designated as unknown attacks). The detailed
statistics of the dataset is given in [22].

B. Features and Classifier

In this work, recently proposed LFRCC feature set [17] is
used to investigate the effect of LP order. Figure 2 shows the
framework for LFRCC feature extraction. Pre-emphasis of the
speech signal is done by passing it through a highpass filter,
which emphasizes the high frequency regions in short-time
speech spectrum. Then, LP analysis is performed to extract
the LP residual. The residual signal then undergoes framing
and windowing of a short segment of 25 ms with 10 ms frame
shift. Furthermore, the power spectrum is estimated frame-
wise which is further given to a linear triangular filterbank
in order to obtain filterbank energies. Finally, Discrete Cosine
Transform (DCT) is applied on the log-filterbank energies to
get de-correlated and energy compact cepstral features. To
reduce the distortions of the transmission channel, Cepstral
Mean Normalization (CMN) is applied on the optimized
LFRCC [23].

In order to perform classification for SSD task, a Gaussian
Mixture Model (GMM) based Bayesian classifier was used
[22]. The performance of the SSD system is measured in
terms of % Equal Error Rate (EER) metric. Final scores are
represented in terms of the Log-Likelihood Ratio (LLR) given
by:

LLR = log
p(X|λ0)

p(X|λ1)
, (7)

where p(X|λ0), and p(X|λ1) are the likelihood scores from
the GMM for the genuine and impostor trials, respectively.

351



Another classifier used was CNN [24]. We use deep Con-
volutional Neural Network (CNN) architecture capable of
differentiating patterns in features corresponding to genuine
and replay speech signals. The CNN architecture used in our
experiments has 3 convolutional layers (i.e., Conv1, Conv2,
and Conv3). After the convolution operation, in order to
introduce non-linearity in the neuron output, an activation
function is used. In our CNN architecture, we use the Rectified
Linear Unit (ReLU) as the activation function. This operation
is followed by a pooling layer of kernel size of 3 × 3 and
stride 1 is used. The flattened output is then fed to 2 Fully
Connected (i.e., FC1 and FC2) layers. The output of the final
FC2 layer gives us a probabilistic output for classification. The
loss function used is binary cross-entropy, and the optimization
algorithm used is gradient descent.

Fig. 3: CNN architecture used for classification of genuine vs.
replay spoof speech.

C. Results

We present experimental results on ASV spoof 2019 PA
dataset using LFRCC feature set for SSD task. We consider the

TABLE II: Effect of LP order on EER for LFRCC Features

Prediction Order
(p)

% EER (GMM) % EER (CNN)
Dev. Eval. Dev. Eval.

6 6.84 18.21 6.23 16.17
8 6.77 17.30 6.08 15.21

10 6.89 19.53 5.35 16.88
12 7.02 19.80 6.72 17.20
14 7.19 20.63 6.96 18.37
16 7.54 20.42 7.34 19.28
18 8.38 21.84 7.94 20.36
20 9.43 23.49 8.86 21.11
24 10.97 24.82 8.93 21.89

effect on the Equal Error Rate (EER) due to various evaluation
factors, such as LP order, and number of subband filters. Table
II shows the effect of LP order on the EER for LFRCC feature
set. It is observed that the best achieved EER is 15.21% on
the evaluation set using CNN. Furthermore, on GMM, the best
achieved EER is 17.30%. Both of these results are obtained
when LP order is kept 8, which we have hypothesized as
optimal (through an analysis as discussed in Section 2). To that
effect, the LP order is fixed as 8 for the rest of the experiments
in our work.

Additional experimental results to observe the impact of
subband filters, and dimension of feature vector as shown in

Table III. While keeping the LP order as 8, the number of
subband filters in the filterbank are varied from 40 to 140.
We observe that the best performance on evaluation set using
GMM as classifier is 16.32%. This is obtained when the
number of subband filters is 120. Furthermore, when CNN
is used as the classifier, the best performance of 14.83%
EER is observed when the number of subband filters is 140.
These observations indicate that the optimized LP order for
replay spoof detection on ASVSpoof 2019 PA dataset is 8.
However, the performance of the countermeasure system is
also improved by increasing the number of subband filters,
i.e., by increasing the resolution in frequency domain.

TABLE III: Effect of Number of Subband Filters on EER

No. of Subband
Filters

%EER
(GMM)

%EER
(CNN)

Dev. Eval. Dev. Eval.
40 6.77 17.30 6.08 15.21
60 6.85 19.01 4.87 17.70
80 7.14 20.47 4.16 18.29
100 7.93 18.28 5.21 17.72
120 8.40 16.32 6.78 15.26
140 9.10 16.79 7.53 14.83

IV. SUMMARY AND CONCLUSIONS

In this study, the LFRCC feature set is exploited to analyze
the effect of optimal LP order on LFRCC feature set for
SSD task. The optimal order of 8 was observed to result
in maximum information in the LP residual. Thus, the im-
portance of LP order for SSD task was emphasized, and
it was shown that the optimal order for LP w.r.t. speech
production mechanism is not the same as for SSD task, which
is the novel aspect of this work. To that effect, analysis is
shown w.r.t. framewise magnitude spectrum of the LP residuals
with varying order. Furthermore, Log Spectral Distance (LSD)
between LP residuals of with various LP orders shows that
the optimal value of LP order is 8. This analysis is further
confirmed by the experimental results obtained. To that effect,
the best performance is obtained on LP order 8 with EER of
15.21% achieved on evaluation set using CNN. Furthermore,
the effect of number of subband filters is observed. It is
observed that the performance of the SSD system further
improves on increasing the number of subband filters in the
filterbank. However, the underlying assumption of this paper
is based on the linearity of source-filter model of speech
production, which further leads us to linear production of
speech. In future, we would like to exploit the non-linear
aspects of speech production (via nonlinear prediction, using
Voltera-Weiner series) for SSD task to get better analysis.
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[14] C. Hanilçi, “Speaker verification anti-spoofing using linear prediction
residual phase features,” in 2017 25th European Signal Processing
Conference (EUSIPCO), Kos Island, Greece, August 8 - September 2,
2017, pp. 96–100.

[15] T. F. Quatieri, Discrete-Time Speech Signal Processing: Principles and
Practice. 2nd Edition, Pearson Education India, 2004.

[16] S. G. Mallat, A Wavelet Tour of Signal Processing. Elsevier, 2nd Ed.
1999.

[17] H. Tak and H. A. Patil, “Novel Linear Frequency Residual Cepstral
Features for Replay Attack Detection,” in INTERSPEECH, Hyderabad,
India, 2-6 September, 2018, pp. 726–730.

[18] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the
IEEE, vol. 63, no. 4, pp. 561–580, 1975.

[19] A. Gray and J. Markel, “Distance measures for speech processing,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 24, no. 5,
pp. 380–391, 1976.

[20] X. Wang, J. Yamagishi, M. Todisco, H. Delgado, A. Nautsch, N. Evans,
M. Sahidullah, V. Vestman, T. Kinnunen, K. A. Lee et al., “The
ASVSpoof 2019 database,” arXiv preprint arXiv:1911.01601, 2019,
{Last Accessed: 24-10-2020}.

[21] M. Todisco, X. Wang, V. Vestman, M. Sahidullah, H. Delgado,
A. Nautsch, J. Yamagishi, N. Evans, T. Kinnunen, and K. A. Lee, “ASV
Spoof 2019: Future horizons in spoofed and fake audio detection,” arXiv
preprint arXiv:1904.05441, 2019, {Last Accessed: 22-10-2020}.

[22] T. Kinnunen, M. Sahidullah, H. Delgado, M. Todisco, N. Evans, J. Ya-
magishi, and K. A. Lee, “The ASVspoof 2017 challenge: assessing
the limits of replay spoofing attack detection,” INTERSPEECH 2017,
Stockholm, Sweden, 20-24 August 2017.

[23] S. Molau, F. Hilger, and H. Ney, “Feature space normalization in adverse
acoustic conditions,” in 2003 IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03).,
vol. 1. Hong Kong, 6-10 April, 2003, pp. I–I.

[24] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT Press Cambridge, 2016, vol. 1, no. 2.

353


