
A deep representation learning speech enhancement
method using β-VAE

Yang Xiang⋆†, Jesper Lisby Højvang†, Morten Højfeldt Rasmussen†, Mads Græsbøll Christensen⋆
⋆ Audio Analysis Lab, CREATE, Aalborg University, Aalbory, Denmark {yaxi,mgc}@create.aau.dk

† Capturi A/S, Aarhus, Denmark {jlh,mhr}@capturi.com

Abstract—In previous work, we proposed a variational
autoencoder-based (VAE) Bayesian permutation training speech
enhancement (SE) method (PVAE) which indicated that the SE
performance of the traditional deep neural network-based (DNN)
method could be improved by deep representation learning
(DRL). Based on our previous work, we in this paper propose to
use β-VAE to further improve PVAE’s ability of representation
learning. More specifically, our β-VAE can improve PVAE’s
capacity of disentangling different latent variables from the
observed signal without the trade-off problem between disen-
tanglement and signal reconstruction. This trade-off problem
widely exists in previous β-VAE algorithms. Unlike the previous
β-VAE algorithms, the proposed β-VAE strategy can also be
used to optimize the DNN’s structure. This means that the
proposed method can not only improve PVAE’s SE performance
but also reduce the number of PVAE training parameters.
The experimental results show that the proposed method can
acquire better speech and noise latent representation than PVAE.
Meanwhile, it also obtains a higher scale-invariant signal-to-
distortion ratio, speech quality, and speech intelligibility.

Index Terms—deep representation learning, speech enhance-
ment, variational autoencoder, β-VAE

I. INTRODUCTION

The aim of speech enhancement (SE) is to remove back-
ground noise from the observed speech signal. In general, SE
is mainly used to reduce the word error rate of the automatic
speech recognition system [1] or improve speech quality and
intelligibility for human listening [2]. Recently, with the wide
application of online meeting systems, SE is required to reduce
the WER for accurate live caption when providing high-quality
speech audio under various complex noise conditions [3].
Thus, SE research is becoming more and more challenging.

During the past decades, many single-channel SE algorithms
have been developed, including signal subspace methods
[4], non-negative matrix factorization methods [5], [6], and
codebook-based methods [7]. In recent years, deep neural
networks (DNN) have shown great potential for SE [2], [8]–
[14] because DNNs can use a non-linear process to model
complex high-dimensional signals, which is more reasonable
in practical applications [15]. Thus, DNN-based methods
usually have a better SE performance than these previous
linear models [4]–[7].

However, most of the regression-based SE algorithms [2],
[8]–[10] do not consider applying DNNs to obtain better
speech representations when conducting SE. Instead, they
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usually use DNNs to directly predict pre-defined targets for SE
[2]. Although this approach can avoid inaccurate assumptions
[8], it cannot ensure that these methods always work in
environments with complex noise [2]. In general, deep repre-
sentation learning (DRL) is important for DNN because DRL
can obtain good signal representations in an unsupervised way
and can, potentially, improve DNN’s ability to extract useful
information in complex environments [15], [16]. Additionally,
a better signal representation usually leads to better predictions
for DNNs [15]. Thus, DRL has a huge potential for DNN-
based SE algorithms and makes them more robust. Moreover,
the lack of a good DRL strategy may cause poor generalization
of DNN-based SE algorithms [2], [15]. A good DRL algorithm
can also disentangle various latent representations [15] of
speech signals (e.g., speaker and phoneme information), which
can also help DNNs achieve a better SE performance.

Recently, to improve traditional DNN’s generalization abil-
ity, DRL-based SE algorithms are proposed [17]–[22]. The
basic idea of these methods is that they use a variational
autoencoder (VAE) [23] to learn speech representations when
modeling speech, and apply a non-negative matrix factor-
ization (NMF) to model noise. VAE is a DRL model and
can perform efficient approximate posterior inference. Ad-
ditionally, VAE can also learn the probability distribution
of complex data. Thus, VAE is suitable for various speech
generative tasks [23]–[25]. These VAE-based algorithms can
effectively improve DNN’s generalization ability, but they
have difficulty obtaining good speech representations from
the observed signal because they cannot disentangle speech
representations from other latent representations [15], [17]–
[22]. This causes the need to use a linear NMF to model
noise, so their noise modeling ability is limited compared
with these non-linear DNN-based methods [23]. And their
SE performance is not always satisfactory in a complex noisy
environment [18].

To obtain a better speech representation from the observed
signal, a novel VAE-based SE method (named PVAE) is
proposed [26]. This method applies an unsupervised method
to learn signal representations and derives a novel VAE lower
bound, which ensures that VAE can disentangle different latent
variables from the observed signal. Compared to the previous
VAE-based SE algorithms, PVAE can use non-linear DNNs
to model noise, which improves the noise modeling ability.
Additionally, this method can adopt various DNN structures
[2], so the DNN-based SE algorithms [2] can be directly
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optimized by PVAE. This is not achieved by VAE-NMF-
based algorithms [17]–[22]. The experimental results [26]
indicate that the SE performance of the traditional DNN-based
methods can be improved by introducing this PVAE-based
DRL algorithm.

Inspired by previous works, in this paper we propose a novel
β-VAE strategy to improve PVAE’s representation learning
and disentangling performance [15] with fewer DNN parame-
ters. β-VAE [27], [28] is originally designed to push VAE to
learn a more efficient latent representation of the data, which
is disentangled if the data contains at least some underlying
factors of variation [27]. However, in general, β-VAE has a
trade-off problem [28]. A better disentanglement within the la-
tent representations usually causes worse signal reconstruction.
In this work, based on the VAE’s application in SE [26], we
propose a strategy to address this trade-off problem to obtain
better speech and noise representation. As a result, our β-VAE
can improve disentangling and representation performance
without signal reconstruction loss. Moreover, the proposed β-
VAE can also optimize the neural network structure of the
original PVAE. This means that the proposed β-VAE (named
β-PVAE) can possibly achieve a better SE performance with
fewer training parameters compared to PVAE.

II. RELATED WORK

Signal Model: in an additive noisy environment, using the
short-time Fourier transform, the observed signal yf,n ∈ C,
speech signal xf,n ∈ C, and noise df,n ∈ C can be written as

yf,n = xf,n + df,n, (1)

where frequency bin f ∈ [1, F ] and time frame index
n ∈ [1, N ]. N and F denote the number of time frames and
frequency bins, respectively. Their log-power spectrum (LPS)
vector [8] at each frame can be represented as y, x, and d,
respectively, where we omit the frequency and time frame
index for simplicity. In [26], we assume that y is generated
from a random process involving the speech latent variables
zx ∈ RL and the noise latent variables zd ∈ RL. L is the
dimension of latent variables. The latent variables zx and
zd are independent. Similarly, x and d are independently
generated by zx and zd, respectively. Fig. 1(a) shows the
generative process. In [26], it is assumed that zx and zd can
be estimated from speech and noise posterior distributions
p(zx|x) and p(zd|d), respectively, and that they can also
be estimated from the noisy speech posterior distributions
p(zx|y) and p(zd|y). To disentangle latent variables, we
assume that p(zx, zd|y) = p(zx|y)p(zd|y). Although this
assumption is not always accurate in practical environments,
it simplifies derivations, and helps us obtain a better signal
model. Additionally, its effect towards signal estimation is not
significant [26] (related analysis will be also given in Section
IV). Fig. 1(b) shows the recognition process.

VAE and β-VAE: the original VAE [23] defines a proba-
bilistic generative process between the observed signal and its
latent variables, and provides a principled method to jointly
learn latent variables, generative and recognition models. The

(a) Generative model (b) Recognition model

Fig. 1: Graphical illustration of the proposed signal model.

generative and recognition models are jointly trained by max-
imizing the evidence lower bound [23]

Ey∼p(y)[log q(y)] ≥ −Ln,

Ln = Ey∼p(y) [DKL (p(zy|y))||q(zy))]
− Ey∼p(y)

[
Ezy∼p(zy|y) [log q(y|zy)]

]
,

(2)

where DKL(||) denotes the Kullback-Leibler (KL) divergence.
zy ∈ RL is the noisy latent variable. Maximizing this lower
bound is equivalent to minimizing Ln.
β-VAE [27] is a modification of the original VAE frame-

work, which introduces an adjustable hyperparameter β in the
KL divergence term:

Ln = βEy∼p(y) [DKL (p(zy|y))||q(zy))]
− Ey∼p(y)

[
Ezy∼p(zy|y) [log q(y|zy)]

]
.

(3)

In general, β > 1 results in more disentangled latent repre-
sentations [27]. Higher values of β can encourage learning
a more disentangled representation. However, β-VAE usually
has a trade-off problem between the latent representation
disentanglement and signal reconstruction.

Bayesian permutation training VAE (PVAE) for SE:
Although the VAE-based algorithms [23], [27] can learn
signal representations and disentangle latent representations
in a self-supervised way, their performance is limited when
disentangling desired latent representations for SE application.
Therefore, a Bayesian permutation training VAE (PVAE) [26]
is proposed for SE. PVAE is a semi-supervised DRL method,
which introduces multiple latent variables in VAE and dis-
entangles them in a semi-supervised way. Fig. 2 shows the
PVAE framework. It can be seen that PVAE includes three
VAE structures: clean speech VAE (C-VAE), noise VAE (N-
VAE), and noisy VAE (NS-VAE). C-VAE and N-VAE are
trained without supervision to obtain speech and noise latent
representations and their posterior estimates p(zx|x), p(zd|d),
respectively. This is achieved by minimizing the following
VAE loss function:

Lc(θx, φx;x) = Ex∼p(x){DKL (p(zx|x)||q(zx))
− Ezx∼p(zx|x)[log q(x|zx)]},

(4)

Ld(θd, φd;d) = Ed∼p(d){DKL (p(zd|d)||q(zd))
− Ezd∼p(zd|d)[log q(d|zd)]},

(5)

where θx, φx, θd, φd are the DNN parameters for the related
probability estimation [26]. Additionally, NS-VAE is trained
under the supervision of C-VAE and N-VAE’s encoders. Based
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Fig. 2: Model illustration for PVAE and β-PVAE.

on the derivation in [26], the NS-VAE’s training loss function
can be written as

Lp(θy, φy;y)

= Ey∼p(y),x∼p(x){DKL (p(zx|y)||p(zx|x))

+ Ezx∼p(zx|y)[log
p(zx|x)
q(zx)

]}

+ Ey∼p(y),d∼p(d){DKL (p(zd|y)||p(zd|d))

+ Ezd∼p(zd|y)[log
p(zd|d)
q(zd)

]}

− Ey∼p(y)

[
Ezd,zx∼p(zd,zx|y) [log q(y|zx, zd)]

]
,

(6)

where θy, φy are the NS-VAE’s network parameters.
In the online SE stage, we assume that the zx, zd sampled

from p(zx|x) and p(zd|d) are approximately equal to the
sample zx, zd sampled from p(zx|y), p(zd|y), respectively.
So, we separately use the NS-VAE encoder’s two outputs as
input of C-VAE and N-VAE to estimate related signals for SE.

III. β-VAE-BASED SPEECH ENHANCEMENT

Inspired by β-VAE, we propose a novel β-VAE strategy
(named β-PVAE) to further improve PVAE’s SE performance.
More specifically, β-VAE is used to improve PVAE’s repre-
sentation learning ability that can better disentangle speech
and noise latent variables from the observed signal, which
can help PVAE obtain better SE performance. In PVAE, all
the PVAE’s decoders are trained in an unsupervised way [26].
The accuracy of the restored signal depends on the quality of
latent representations. This means that the SE performance in
PVAE is determined by the quality of speech and noise latent
variables.

In [26], we derived a novel evidence lower bound (ELBO)
(Ey∼p(y)[log q(y)] ≥ −Lp). Additionally, β-VAE [27] applies
an adjustable hyperparameter β in original VAE’s [23] KL
divergence term. Following β-VAE’s property and PVAE’s
derivation [26], we apply this hyperparameter in the derived
ELBO [26], the (6) can be written as

Lp(θy, φy;y)

= βEy∼p(y),x∼p(x){DKL (p(zx|y)||p(zx|x))

+ Ezx∼p(zx|y)[log
p(zx|x)
q(zx)

]}

+ βEy∼p(y),d∼p(d){DKL (p(zd|y)||p(zd|d))

+ Ezd∼p(zd|y)[log
p(zd|d)
q(zd)

]}

− αEy∼p(y)

[
Ezd,zx∼p(zd,zx|y) [log q(y|zx, zd)]

]
.

(7)

In (7), we introduce a hyperparameter α in the restoration
term. The purpose is to better analyze β-VAE [27] in PVAE.
Note, α will not generate any effects for the original β-
VAE’s property because what is important in (7) is the
weight ratio β : α. This weight ratio can also be written as:
γ = β : α = (β/α) : 1, which is equal to the original β-
VAE’s loss function in (3). β-VAE [27] indicates that a higher
value of β encourages VAE learning a more disentangled
representation. Thus, we hypothesize that a higher value of
β : α in (7) can cause a better disentangling performance for
speech and noise latent variables. This point will be verified
by later experiments.
β-VAE usually has a trade-off problem between the dis-

entanglement and signal reconstruction [27], which means
that a good disentangled representation usually leads to poor
signal reconstruction performance. In NS-VAE (as shown in
Fig. 2), this trade-off is between the quality of observed signal
reconstruction and the disentanglement of speech and noise
latent variables. In SE application, we only need NS-VAE’s
disentanglement function, observed signal reconstruction is not
useful (dashed part in Fig. 2). This means that we should set
a very high weight ratio γ to obtain a better disentanglement
performance [27]. Ideally, γ → +∞. One strategy to achieve
this purpose is to set α = 0, so the loss function (7) can be
rewritten as

Lβ(θy;y) = βEy∼p(y),x∼p(x){DKL (p(zx|y)||p(zx|x))

+ Ezx∼p(zx|y)[log
p(zx|x)
q(zx)

]}

+ βEy∼p(y),d∼p(d){DKL (p(zd|y)||p(zd|d))

+ Ezd∼p(zd|y)[log
p(zd|d)
q(zd)

]}.

(8)

In (8), it can be found that there is no reconstruction term. This
means that we do not need to train the NS-VAE’s decoder,
which reduces the PVAE’s training parameters. The dashed
part in Fig. 2 is removed in the proposed β-PVAE framework.
Comparing the PVAE and proposed β-PVAE, we can find
that the β-VAE can be used to optimize the PVAE’s network
structure and β-PVAE also addresses the β-VAE’s trade-off
problem for SE application. All in all, the combination of β-
VAE and PVAE can not only improve PVAE’s disentanglement
performance, but also simplify its framework.

To summarize, the proposed β-PVAE includes a training
and an enhancement stage for the SE application, which
is similar to PVAE [26]. In the training stage, C-VAE and
N-VAE are separately pre-trained by self-supervision using
(4) and (5). After that, we apply (8) to train NS-VAE. In
the enhancement stage, we can separately use the NS-VAE
encoder’s two outputs as input of C-VAE and N-VAE to obtain
the prior distributions q(x|zx) and q(d|zd) for SE. Moreover,
to calculate (8), related prior and posterior distributions need to
be determined. Here, all the estimations of these distributions
are the same as PVAE. More details can be found in [26].

IV. EXPERIMENTS

In this section, we report two experiments. First, we will
investigate the disentanglement ability of the latent variables
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TABLE I: Average STOI, PESQ, and SI-SDR comparison for
β-PVAE under different γ with a 95% confidence interval (β-
PVAE is equal to PVAE when γ = 1)

Method STOI PESQ SI-SDR

Noisy 88.94(± 1.77) 2.29(± 0.02) 8.36(± 1.13)

Oracle 98.12(± 0.35) 4.19(± 0.00) 19.84(± 0.92)

PVAE (γ = 1) 89.33(± 1.72) 2.59(± 0.03) 10.31(± 1.03)

γ = 2 89.81(± 1.67) 2.69(± 0.02) 11.84(± 0.97)

γ = 5 89.76(± 1.64) 2.70(± 0.02) 12.23(± 0.93)

γ = 10 89.94(± 1.70) 2.71(± 0.02) 12.31(± 0.94)

γ = 100 89.98(± 1.70) 2.72(± 0.02) 12.45(± 0.94)

γ = 1000 90.02(± 1.71) 2.74(± 0.01) 12.55(± 0.94)

γ = +∞ 90.05(± 1.71) 2.75(± 0.01) 13.20(± 0.95)

in the proposed algorithm. In addition, β-PVAE’s SE perfor-
mance will be indicated.

Datasets: In this work, we use the DNS challenge 2021
corpus [29] to evaluate the performance of the proposed
algorithm. We select English speakers and randomly split 70%
of speakers for training, 20% for validation, and 10% for
evaluation. Then, all the noise from the DNS noise corpus are
randomly divided into training, validation, and test noise in a
proportion similar to that used for speech utterances. Next, the
corresponding training, validation, and test corpus for speech
and noise are randomly mixed using DNS script [29] with
random signal-to-noise ratio (SNR) levels (SNR range is from
–10dB to 15dB). Other parameters of signal mixing are the
default values in the DNS script [29]. Finally, we randomly
choose 20 hours mixed training utterances, 5 hours mixed
validation utterances, and 1 hour mixed test utterances to build
experimental dataset. All signals are down-sampled to 16 kHz.

Experimental settings: In the experiments, the neural
structures for C-VAE and N-VAE are the same. Their encoders
include four hidden 1D convolutional layers [11]. The number
of channels in each layer is 32, 64, 128, and 256. The size
of each convolving kernel is 3. The two output layers of the
encoders are fully connected layers with 128 nodes. Their
decoders consist of four hidden 1D convolutional layers (the
channel number of each layer is 256, 128, 64, and 32 with 3
kernel) and two fully connected output layers with 257 nodes.
For NS-VAE, its encoder’s hidden layer setting is the same
as C-VAE. NS-VAE’s encoder has four output layers with
128 nodes. For C-VAE, N-VAE, and NS-VAE, their activation
functions in the hidden and output layer are ReLU and linear
activation function, respectively. All networks are trained by
the Adam algorithm with a 128 mini-batch size.

Experimental results: To evaluate the SE performance
of various algorithms, we will use scale-invariant signal-to-
distortion ratio (SI-SDR) in decibel (dB) [30], short-time
objective intelligibility (STOI) [31], and perceptual evaluation
of speech quality (PESQ) [32] as evaluation metrics.

First, we will investigate β-PVAE’s performance in disen-
tangling speech and noise latent variables. Based on our previ-
ous derivation and analysis [26], β-PVAE’s SE performance is
determined by disentanglement performance. Table. I ’Oracle’
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Fig. 3: Average KL divergence comparison of the posterior
distribution for different ratio γ.

shows the SE performance with a 95% confidence interval if
latent variables are completely disentangled. Here, the signals
are reconstructed by mask estimation [9]. The complete dis-
entanglement means that they have the same posterior forms:
p(zx|x) = p(zx|y) and p(zd|d) = p(zd|y). This is because
p(zx|x) and p(zd|d) are learned in an unsupervised way with
speech or noise only, which ensures that their latent represen-
tation only contains speech or noise representation. ’Oracle’
results indicate that β-PVAE achieves a very satisfactory
SE performance in SI-SDR, STOI, and PESQ, which shows
the importance of disentangling latent variable for achieving
excellent SE performance. The NS-VAE’s purpose is to disen-
tangle different representations from the observed signal and
obtain the closest possible speech and noise posterior. Next, we
use KL divergence to evaluate the practical disentanglement
performance in latent space. A better disentanglement can
lead to a lower KL divergence (DKL (p(zd|y)||p(zd|d)) and
DKL (p(zx|y)||p(zx|x))). Fig. 3 shows the average KL di-
vergence comparison of validation samples for using different
ratios γ = β : α in loss function (7) to train NS-VAE. In
(7), we keep α = 1 and change different β to determine
ratio γ, and γ = +∞ means that α = 0, β = 1, which
is equal to (8). In Fig. 3, we see that the KL divergence
decreases with the increase of γ for both speech and noise
latent variables, which means that the disentangled posteriors
get closer to the true posteriors and the NS-VAE achieves a
better disentanglement performance. When NS-VAE’s decoder
is removed (γ = +∞, α = 0, β = 1), NS-VAE can acquire
the best posterior estimation. This verifies our hypothesis
and deduction in Section 3. Additionally, although we have
an inaccurate posterior conditional assumption p(zx, zd|y) =
p(zx|y)p(zd|y), Fig. 3 shows that NS-VAE can still estimate a
satisfactory posterior with a low KL divergence. However, this
inaccurate assumption may hinder NS-VAE from obtaining a
lower KL divergence when γ = +∞.

Next, we will evaluate the SE performance of the proposed
β-PVAE. We use basic PVAE [26] as the reference method,
which can be more direct to find the effects of β-VAE for the
previous PVAE. The enhanced speech is obtained by mask
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estimation [9]. Table. I shows the experimental results. We
find that β-PVAE achieves a very significant STOI, PESQ,
and SI-SDR improvement over PVAE (from β = 1 to β = 2 ).
This indicates that good disentanglement performance in latent
space can directly lead to an improvement in speech quality
and intelligibility. In addition, β-PVAE achieves the best SE
performance when β = +∞. This illustrates that the proposed
β-PVAE can effectively improve PVAE’s SE performance with
a simpler network structure.

V. CONCLUSIONS

In this paper, a β-PVAE-based SE method is proposed to
improve previous PVAE’s SE performance. More specifically,
β-PVAE can improve PVAE’s ability to disentangle speech and
noise latent variables from the observed signal. In addition,
based on VAE’s application in SE, the proposed β-PVAE
addresses the trade-off problem between disentanglement and
signal reconstruction, which widely exists in β-VAE. Com-
pared with the previous PVAE algorithm, β-PVAE also sim-
plifies its neural network and reduces the number of training
parameters when improving the SE performance. Experimental
results indicate that a good signal representation can achieve a
very satisfactory SE performance. Moreover, β-PVAE obtains
a better disentanglement performance and achieves higher SI-
SDR, PESQ, and STOI scores than PVAE. In future work,
we believe that β-PVAE can achieve better SE performance
by improving the latent space disentanglement performance or
the decoder’s signal reconstruction ability.
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