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Abstract—For replay Spoof Speech Detection (SSD), features
that incorporate auditory transform-based information as well as
Instantaneous Frequency (IF) information have been proposed
in the past. IF is estimated either by derivative of analytic
phase via Hilbert transform, or by using high temporal reso-
lution Teager Energy Operator (TEO)-based Energy Separation
Algorithm (ESA). However, the excellent temporal resolution of
ESA comes with lacking in using relative phase information, and
vice-versa. Hence, we propose novel CFCCIF-QESA features,
with excellent temporal resolution as well as relative phase
information. CFCCIF-QESA is designed by exploiting relative
phase shift, without estimating phase explicitly. Effectiveness
of proposed approach is validated by mutual information and
Kullback-Leibler (KL) divergence-based analysis. Furthermore,
TEO is used for complex signals for SSD. Consequently, the
novel ideas of quadrature relative phase and TEO for complex
signals are exploited for improving the performance of CFCCIF-
ESA on ASVspoof 2017 version2.0 and ASVspoof 2019 databases.
On ASVspoof 2017 evaluation set, when compared with CQCC
features, CFCCIF-QESA features yield percentage improvement
of 35.51% and 30.19%, with GMM and CNN classifiers, respec-
tively. As compared to CFCCIF-ESA, a percentage improvement
of 30.40% is achieved on ASVspoof 2019 evaluation dataset with
GMM. Finally, the analysis of latency period indicates relatively
better performance of CFCCIF-QESA and thus, its potential for
practical SSD system deployment.

Index Terms—Quadrature phase, Mutual Information, KL
divergence, Energy Separation Algorithm, Instantaneous Fre-
quency.

I. INTRODUCTION
An Automatic Speaker Verification (ASV) systems is used

to accept or reject the claimed speaker’s identity. Recent
advancements in Artificial Intelligence (AI) have led to robust
and high performing ASV systems. However, ASV systems
are also vulnerable to various spoofing attacks, such as im-
personation by twins [1], Speech Synthesis (SS) [2], Voice
Conversion (VC) [3], and replay [4]. To that effect, various
challenges for Spoofed Speech Detection (SSD) have been
organized in the past during INTERSPEECH conferences,
such as ASVspoof 2015 [5], ASVspoof 2017 [6], ASVspoof
2019 [7], and ASVspoof 2021 [8] to develop countermeasures
against spoofing attacks on ASV systems. However, out of all
the known spoofing attacks, replay attacks are the easiest to
mount but difficult to detect due to the availability of high-
quality recording and playback devices [9].

For SSD task, in [10], an Auditory Transform (AT)-based
Cochlear Filter Cepstral Coefficients-based Instantaneous Fre-
quency (CFCCIF) feature set was proposed. It was based on

cochlear filter and IF-based information. To that effect, IF is
estimated conventionally from the analytic phase denoted via
the Hilbert transform (HT) of the underlying real signal [11].
However, estimating IF from this approach is computationally
expensive. Moreover, the resolution of HT in time-domain is
poor, as it requires a block (frame) of speech data [12]. To
address this issue, in [13] the authors proposed CFCCIF-ESA
feature set which uses Teager Energy Operator (TEO)-based
Energy Separation Algorithm (ESA) [14] to estimate IF with
high time resolution for replay SSD task [15]. Due to the use
of TEO in estimation of IF, CFCCIF-ESA utilizes only the
amplitude information of the signal for replay SSD. Moreover,
due to absence of HT, it does not contain the quadrature-phase
component of the signal. Therefore, in order to incorporate
both the advantages, i.e., excellent time resolution of TEO
and having quadrature-phase component via HT, we propose
CFCCIF-QESA feature set. Here, the term QESA represents
Quadrature-based ESA. Furthermore, QESA is based on the
extended definition of TEO for complex signals. To our
knowledge, this extended definition of TEO is exploited for
the first time for SSD task.

Additionally, the choice of quadrature-phase (90◦) compo-
nent along with in-phase component is justified by Mutual
Information (MI)-based analysis, described in further detail
in Section 2. As a result, we have developed CFCCIF-
QESA feature set. To further analyze the effectiveness of
considering quadrature-phase component, model-level analysis
is done on Gaussian mixtures of the genuine vs. spoof class
for both CFCCIF-ESA and CFCCIF-QESA. To that effect,
Kullback–Leibler (KL) divergence between genuine and spoof
Gaussian mixtures is estimated. Lastly, we also analyze the
latency period of the CFCCIF-QESA in order to investigate
its potential for practical SSD system deployment ability.

II. PROPOSED APPROACH

A. Exploiting Relative Phase-Based Information

So far, most of the features have been derived from the
magnitude spectrum of the speech signal [16]. However, the
phase characteristics can also be useful for many applications
[17]–[20]. In this work, we employ an information-theoretic,
approach to measure relative phase-based information, without
estimating phase explicitly. In particular, we use Mutual In-
formation (MI) to analyze the amount of information between
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the signal and its corresponding phase-shifted signal. MI of
two signals is a measure of dependence of the signals on each
other, i.e., a measure of how much information the two signals
share. For example, if two signals X and Y are independent,
then knowing X does not yield any information about Y and
vice-versa, so their MI is zero. MI is estimated as [21]:

I(X;Y ) = h(X)− h(X|Y ), (1)
where h denotes the entropy (i.e., measure of randomness).
Using the joint and marginal pdfs of X and Y, the MI is [21]:

I(X;Y ) =

∫
x

∫
y

fXY (x, y) log2

(
fXY (x, y)

fX(x)fY (y)

)
dydx. (2)

Given that speech signal can be modelled as an AM-FM signal,
we consider an AM-FM signal as:

a(t) = (1 + 0.5cos (60πt)),

x(t) = a(t) cos
(
2πfct+ 4sin

(
2πfct+

(π
4

)))
.

(3)

For this AM-FM signal (expressed via eq. (3)) and its phase-
shifted version, we have estimated the MI. The angle at which
MI is minimum is the optimum phase value. From the values
of MI obtained (as shown in Fig. 1), it can be observed that
the optimum phase difference is 90◦ with MI=1.4349 bits. In
addition, for a signal x(t), the Fourier transform is denoted as
X(ω) = XR(ω) + jXI(ω). Therefore, ∡X(ω) is given as

∡X(ω) = tan−1

(
XI(ω)

XR(ω)

)
. (4)

From eq. (4), it can be observed that the Fourier transform
phase ∡X(ω) is always zero for XI(ω) = 0 which means if
we do not use π/2-shifted version of cos(ωt) (i.e., sin(ωt))
as an additional basis function in the definition of Fourier
transform, it is not possible to compute ∡X(ω). In this regard,
Fig. 1 (b) shows the MI obtained between a cosine and
its phase-shifted versions. Notably, for the cosine signal as
well, MI is observed to be minimum at π/2 phase shift in
cos(ωt) (i.e., sin(ωt)) indicating significance of cos(ωt) (i.e.,
in phase) and its quadrature component (i.e., sin(ωt)) in the
original definition of the Fourier transform. To that effect,

Fig. 1: MI variation w.r.t. relative phase of (a) an AM-FM
signal, (b) a cosine signal and its phase-shifted version.

taking phase-shift as 90◦ (i.e., a quadrature) we propose an
improved relative phase-based CFCCIF-QESA feature set. The
feature extraction procedure of CFCCIF-QESA is shown in
Algorithm 1. The quadrature component of the real-valued
speech signal is achieved using Hilbert transform, which

results in a complex-valued analytic signal, having a causal
spectrum. Subsequently, TEO for complex signals is used
for estimating IF using ESA. In the next sub-Section, we
present the extended definition of TEO for complex signals,
which is further used in the CFCCIF-QESA feature extraction
procedure.

B. Extracting TEO-Based Energy for Complex Signals

As discussed above, we exploit quadrature phase-shift by
estimating analytic signal. Here, we discuss the extended
definition of the TEO on a complex-valued signal z(t), i.e.,
ψc[z(t)] which is given by [22]:

ψc[z(t)] = z(t)ż∗(t)− 1

2
[z̈(t)z∗(t) + z(t)z̈∗(t)]. (5)

Given that z(t) is complex, the TEO defined in eq. (5) is
applied on real and imaginary parts of z(t) separately as [23]:

ψc[z(t)] = ψ[zr(t)] + ψ[zi(t)]. (6)

In this work, we extract TEO-based energy using eq. (6) on
complex-valued analytic signal for improved estimation of
energy as a part of ESA, discussed in the next sub-Section.

C. CFCCIF-QESA Feature Extraction

The proposed CFCCIF-QESA feature set consists of various
sub-systems, as shown in Fig. 2. The filterbank of the CFCCIF-
QESA consists of AT-based cochlear filters, which represent
the human auditory system consisting of Basilar Membrane
(BM). As per place theory of hearing [24], only a particular
region of the BM vibrate in response to a particular frequency
region in the speech signal. The inner hair cells act as
transducers, converting the vibrations of the BM to energy.
Given that the motion of the hair cell is only in the positive
direction, it is expressed mathematically as:

H(a, b) = (F (a, b))2, (7)

where F (a, b) is the output of the filterbank, and a and b
govern the size and shape of each cochlear filter. The hair cell
output of each filterbank is converted into a representation of
the nerve spike density, which is computed as an average of
H(a, b) [10]. Furthermore, the quadrature-phase component

Algorithm 1: IF estimation using Quadrature-based
Energy Separation Algorithm (QESA)
Input: Input: Subband filter output f [n]
Output: Output: IF

1 fz[n] = f [n] + j.HT{f [n]}
/* Using Equation(6) */

2 Er[n] ← TEO{real(fz[n])}
3 Ei[n] ← TEO{imag(fz[n])}
4 ψ{fz[n]} = Er[n] + Ei[n]

5 IF ← Cos−1
[
1−ψ{fz [n]−fz [n−1]}

2ψ{fz [n]}

]
in the output f [n] of the filterbank is introduced by taking its
analytic signal, fz[n]. This is because the analytic signal is
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Fig. 2: Functional block diagram of proposed CFCCIF-QESA feature set (proposed algorithm denoted via dotted box), along
with previous IF estimation methods using Hilbert transform and ESA to derive CFCCIF and CFCCIF-ESA, respectively.

generated by taking the Hilbert transform, which is nothing
but the quadrature-shifted version of f [n]. Now, in order to
estimate the energy of the complex-valued analytic signal, we
use the extended definition of TEO as described in Section
II-B. Furthermore, the energy profile obtained from the ex-
tended TEO is used to estimate IF using ESA. The ESA for
IF estimation of a signal f(n) is given by [24]:

ωi[n] ≈ Cos−1
[1− ψ{f [n]− f [n− 1]}

2ψ{f [n]}

]
. (8)

Here, the ψ{f [n]} represents the Teager energy of f [n], and
the ωi[n] represents the estimated IF.

Fig. 3: Panel I and Panel II show waterfall plots for CFCCIF-
ESA and CFCCIF-QESA, respectively. Here, (a) and (b) are
corresponding to genuine speech signal, and (c) and (d) are
corresponding to spoofed speech signal.

D. Model-level Measure of CFCCIF-ESA vs. CFCCIF-QESA

In order to show the efficiency of the proposed CFCCIF-
QESA, we estimate the model-level measure of CFCCIF-
ESA (i.e., without quadrature-phase component) and CFCCIF-
QESA (i.e., with quadrature-phase component) on ASVspoof
2017 and ASVspoof 2019 datasets. KL divergence between
statistical Gaussian Mixture Model (GMM) of genuine and
spoofed speech, is used as a model-level measure of discrim-
inative ability [25]. To that effect, we have estimated KL
divergence between genuine and spoof GMMs of the two

Fig. 4: (a) KL divergence between genuine and spoof Gaussian
mixtures on (a) ASVspoof 2017, and (b) ASVspoof 2019

feature sets CFCCIF-ESA and CFCCIF-QESA. A higher value
of KL divergence can indicate better discriminating ability of
the GMM.

KL divergence tells us about how much one discrete prob-
ability distribution function (PDF) differs from a second PDF.
For SSD task, it has been used as a model-level measure for
distinguishing genuine vs. spoof class [26]. If p and q are two
discrete PDFs, then it is a measure of the information lost,
when q(x) is used to approximate p(x). Mathematically, it is
expressed as [25]:

KL(p||q) = −
∫
x

p(x) ln

{
q(x)

p(x)

}
dx. (9)

From Fig. 4 it is worth noting that the KL divergence between
genuine and spoof Gaussian mixtures is higher for CFCCIF-
QESA than that for CFCCIF-ESA features, indicating better
discriminative ability of proposed feature set which is shown
by the waterfall plots in Figure 3 and is also reflected in results,
discussed in the next Section.

III. EXPERIMENTAL RESULTS
A. Datasets Used

In this study, we have used ASVSpoof 2017 V2.0 (real
replay) and ASVSpoof 2019 (Physical Access via simulated
replay) corpora, having 16 kHz sampling frequency. The
statistics of both the datasets are given in [6], [7].

B. Features and Classifier Used
The experiments are performed using auditory transform-

based features, namely, CFCCIF, CFCCIF-ESA, and CFCCIF-
QESA, with the baseline CQCC features. CFCCIF-QESA is
implemented using 80 linearly-spaced filterbanks, with the
filter parameters as a = 3 and b = 0.016, which have been
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TABLE I: Results (in % EER) using GMM and CNN on ASVspoof 2017 v2.0 and GMM on ASVspoof 2019 PA datasets

Feature Set ↓ Dev.
(GMM)

Eval.
(GMM)

Dev.
(CNN)

Eval.
(CNN)

Dev.
(GMM)

Eval.
(GMM)

Dataset → ASVspoof 2017 V2.0 ASVspoof 2019 PA
CQCC(baseline B1) 12.87 18.81 10.00 28.42 9.87 11.04

CFCCIF (S1) 16.61 17.38 10.92 16.40 36.93 37.61
CFCCIF-ESA (S2) 11.54 14.77 11.31 19.02 36.29 36.94
Quadrature based

CFCCIF-ESA (S3) 9.71 12.13 7.67 14.00 22.39 25.71

B1⊕S3 9.54 12.09 2.19 11.00 9.87 11.01
S1⊕S3 9.6 11.98 7.13 12.80 22.20 25.60
S2⊕S3 9.52 11.94 6.55 13.33 22.18 25.58

S1⊕S2⊕S3 9.51 11.93 6.37 12.86 22.38 25.65

Fig. 5: DET curves for the systems on (a) development set (b)
evaluation set of ASVspoof 2017 dataset using GMM.

found empirically for optimal performance. All the feature
sets are 36-dimensional with static, ∆, and ∆∆ coefficients.
Furthermore, to enhance the performance, Cepstral Mean and
Variance Normalization (CMVN) is applied on feature sets,
which eliminates the channel distortion [27].

For classification task, two classifiers, namely, GMM and
Convolutional Neural Network (CNN) have been used. The
GMM is used, with 512 mixture components, to train the
model. The performance of the model is evaluated using
%EER. The CNN consists of 5 convolution blocks and 4 Fully-
Connected (FC) layers. Each convolution block includes a 2-D
convolution layer followed by batch normalization and max-
pooling layer. The operations in both convolution and max-
pooling layers are done using kernels of sizes 3×3 and 2×2,
respectively. In the convolution layer, the padding and stride
are kept at 1. The size of input to the first convolution layer
is 36 × 400. The batch size and learning rate are set as 32
and 0.0001, respectively. The activation function used is the
Rectified Linear Unit (ReLU). The cross-entropy loss is used
as the loss function.
C. Results

The obtained experimental results (shown in Table I) on
the proposed CFCCIF-QESA features are compared with the
existing auditory transform-based features, such as CFCCIF
and CFCCIF-ESA. The results are also compared with the
ASVspoof 2017 challenge baseline CQCC features. It can
be observed that the CFCCIF-QESA feature set outperform
all the other features on ASVspoof 2017 v2.0 dataset, for
both GMM and CNN classifiers. Further on ASVspoof 2017
dataset, Fig. 5 shows the Detection Error Trade-off (DET)
curves for all the systems, including their fusion systems. On
the evaluation set of ASVspoof 2017 dataset, as compared to

CFCCIF-ESA (non-quadrature based), CFCCIF-QESA gave a
percentage improvement of 17.87% and 22.59% with GMM
and CNN, respectively. Furthermore, the score-level fusion of
the proposed CFCCIF-QESA feature set with CFCCIF and
CFCCIF-ESA yields further reduced % EER in all the cases.
In order to capture the complementary information of each
system, score-level fusion is done on Log-Likelihood Ratio
(LLR) scores, by computing the linear weighted sum as

LLRfused = α · LLRfeat1 + (1− α) · LLRfeat2, (10)

where LLRfeat1 and LLRfeat2 are LLR scores derived from
feature set-1 and feature set-2, respectively. The Table I shows
the score-level fusion of the auditory transform-based systems
S1, S2, S3, where ⊕ denotes fusion. The contribution of each
feature set in the scores obtained from fusion is determined
by α ∈ [0, 1]. On ASVspoof 2017 dataset, values of α for
systems S1⊕S2, S2⊕S3, and S1⊕S2⊕S3 are 0.95, 0.093,
and 0, respectively, for development, and 0.67, 0.75, and 0.08,
respectively, for evaluation set.

D. Analysis of Latency Period
Latency period represents the performance evaluation in

terms of %EER w.r.t different durations of speech segment
in an utterance. The utterance duration ranges from 20 ms to
2 seconds, with an interval of 200 ms. Further, the utterance
duration is selected by considering the number of frames.
Figure 6 shows comparison between the CQCC baseline, CFC-
CIF, CFCCIF-ESA, and CFCCIF-QESA. It can be observed
that all the feature sets show comparable latency with each
other for the development set of ASVSpoof 2017 as shown
in Figure 6. However, for the evaluation set of ASVSpoof
2017 as shown in Figure 6 (b), we observe a considerable
improvement of CFCCIF, CFCCIF-ESA, and CFCCIF-QESA
in latency performance w.r.t. CQCC baseline. Furthermore, the
%EER converges to the minimum value as the speech duration
provided to the model of SSD system increases. Additionally,
the feature performance is better if for a low latency period
the %EER is also low, indicating faster classification by
the model and thus, indicating suitability of the system for
practical deployment.

IV. SUMMARY AND CONCLUSIONS

In this study, QESA is proposed for the first time for
utilizing information captured by relative phase-shift between
signals as well as exploiting excellent time resolution of
ESA. To that effect, auditory transform-based CFCCIF-QESA
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Fig. 6: Analysis of latency period for the SSD system (a)
dev. set (b) eval. set of ASVspoof 2017 dataset using various
feature sets.

feature set is proposed. MI-based analysis is done to determine
the optimum relative phase shift. It is found that a quadrature
phase shift is the best suited. Further, MI is used to justify the
basis functions used in the original definition of Fourier trans-
form. To that effect, the signal is converted to its analytic signal
(which has its real and imaginary parts separated by a quadra-
ture phase). The analytic signal is complex-valued and hence,
for the first time, the extended definition of TEO for complex
signals is used for the SSD task. Experiments are performed
on ASVspoof 2017 version 2.0 and ASVspoof 2019 datasets
and CFCCIF-QESA features are shown to perform better than
features without quadrature-phase on ASVspoof 2017 dataset
using GMM. However, the limitation of this work is that the
proposed features does not yield improved performance than
CQCC baseline for ASVspoof 2019 PA dataset (which is in
agreement with recent findings in [28]), because it contains
simulated replay utterances, unlike ASVspoof 2017 dataset
which contains replay utterances under realistic scenarios. Our
future efforts will be directed towards investigate performance
of CFCCIF-QESA for SS and VC-based attacks on ASV.
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