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Abstract—Quantitatively revealing the relationship between
speakers’ physiological structure and acoustic speech signals
by considering the properties of resonance and antiresonance
can help us to extract effective speaker discriminative informa-
tion (SDI) from speech signals. The conventional quantification
method based on F-ratio only considers the power of acoustic
speech in each frequency band independently. We propose a novel
frequency-wise attentional neural network to learn the nonlinear
combined effect of the frequency components on speaker iden-
tity. The learned results indicate that antiresonance frequency
induced by the nasal cavity is another essential factor for
speaker discrimination that the F-ratio method could not reveal.
To further evaluate our findings, we designed a non-uniform
subband processing strategy based on the learned results for
speaker feature extraction and did automatic speaker verification
(ASV). The ASV results confirmed that further emphasizing the
spectral structure around the antiresonance frequency region can
enhance speaker discrimination.

Index Terms—physiological feature, non-uniform filterbank,
frequency-wise attention, data-driven feature

I. INTRODUCTION

The resonance and antiresonance properties of a speaker’s
vocal tract are closely related to the physiological structure of
their speech organs and include a lot of speaker discriminative
information (SDI) [1], [2]. Therefore, quantifying the effect of
frequency components on the speaker identity by considering
the properties of resonance and antiresonance can help us to
understand the relationship between speakers’ physiological
structure and acoustic speech signals and extract reliable SDI.

Previous research showed that the diversity of speech organs
(e.g., the glottis [3], nasal cavity [4]–[6], piriform fossa
cavities [7], [8], and vocal tract length [9]) non-uniformly
provides speaker-dependent information to different frequency
components in the acoustic spectrum. This SDI is encoded in
the resonances and antiresonances of the speech spectrum.
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Joint Research Projects/Seminars (JSJSBP120197416), a Grant-in-Aid for Sci-
entific Research (20H04207), the Fund for the Promotion of Joint International
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KDDI Foundation (Research Grant Program).

Many acoustic features have been successfully used for
speaker recognition based on an elaborate non-uniform filter-
bank (NUF). These features emphasize the spectral structure
around frequency regions with high speaker discrimination.
The Mel-scale used in the Mel-frequency cepstral coefficient
(MFCC) feature [10], Bark scale [11] and ERB scale [12]
has been proposed to achieve frequency warping based on
the frequency resolution of human hearing. Based on these
auditory perception-inspired feature extraction methods, robust
automatic speech recognition (ASR) could be achieved. How-
ever, feature extraction in ASR is for removing or normalizing
SDI. Therefore, those feature extraction methods are not suit-
able for extracting SDI for tasks that require speaker identity
information [1].

Recently, data-driven-based methods of exploring SDI have
been getting a lot of attention. For example, Gaussian func-
tions have been constructed (instead of triangular Mel-scale
filterbanks) as a pseudo-filterbank layer to obtain learnable
filterbanks for feature extraction in the automatic speaker ver-
ification (ASV) task [13]. Furthermore, the SincNet proposed
in [14] was used to obtain superior band-pass filters in the
first layer of NN with raw time-domain waveform as input.
However, these methods could not provide insights into how
those extracted features are connected to the physiological
structure of vocal tracts, which is the physical foundation for
discriminating speakers. Therefore, we aim to figure out where
SDI is encoded in acoustic speech and reveal its connections
to the physiological structure of the vocal tract.

Given the strong connection between the physiological
structure of the vocal tract and acoustic spectral structure, it
is logical to measure the relevance between them. Rather than
figuring out the relevance based on analytical approaches from
case studies [3]–[9], the statistical methods based on analyzing
a large speaker data corpus have been proposed. For example,
Fisher’s F-ratio [15] is a statistical method to measure the
discriminative ability of a feature for a given recognition
task. This method was employed to measure the relationship
between frequency components and speaker individuality (as
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Fig. 1. Proposed residual network architecture augmented with frequency-wise attention to learn dependencies between frequency components and speaker
individuality

in [1]). Then, a speaker-dependent acoustic feature, named
non-uniform filterbank cepstral coefficients (NUFCC), was
proposed to improve speaker identification performance. A
similar method was used to improve the accuracy of speech
emotion recognition [16] and replay attack detection [17].

However, the F-ratio-based quantification method only uses
the statistical mean for the variance estimation with a simple
single-mode model (e.g., single-mode Gaussian distribution
model assumption). In addition, the F-ratio is estimated from
each frequency band independently based on a power spectrum
feature. It cannot consider the combined effects of each fre-
quency component on speaker discrimination and may ignore
the spectral structure around the antiresonance region because
antiresonance usually contributes to a spectral valley with low
power energy. The combined effects of this spectral valley
(antiresonance) with spectral peaks (resonances) could encode
SDI in a delicate spectral structure, which is better to explore
for SDI extraction.

Therefore, we propose a novel data-driven quantification
method to make up for the deficiencies of the F-ratio. Inspired
by the channel-wise attention model proposed for image recog-
nition [18], the proposed method combines a frequency-wise
attention architecture with a residual network (ResNet) to learn
the nonlinear combined effect of the frequency components
on the speaker identity from acoustic data. Based on the
attentional neural model, it is supposed that the importance
of frequency components to SDI extraction could be ex-
plicitly measured. Moreover, we conducted qualitative and
quantitative evaluations to check whether or not the learned
importance measurement of frequency components could fit
the knowledge derived from the physiological study of speech
production and improve the performance of the speaker-related
tasks. By emphasizing the spectral structures around those
revealed important frequency regions, it is expected that the
performance of ASV will be improved.

II. PROPOSED QUANTIFICATION METHOD

Inspired by attention modeling in pattern recognition tasks,
we designed a frequency-wise attention model to capture the

importance of each frequency component when the recognition
task is designed as speaker recognition. Before introducing
our proposed method, first, we briefly review the F-ratio-
based method of estimating the importance of each frequency
component in speaker discrimination.

A. F-ratio-based measurement for speaker discrimination

Given the input acoustic features for speaker discrimination,
the F-ratio is defined as:

F-ratio =
1
M

∑M
i=1(ui − u)2

1
M ·N

∑M
i=1

∑N
j=1(x

j
i − ui)2

, (1)

where xj
i is the acoustic feature variable (subband energy is

used in this study) of the jth speech frame of speaker i with
j = 1, 2, ..., N , and i = 1, 2, ...,M , and ui and u are variables
that represent the subband energy averages for speaker i and
for all speakers, respectively, which are defined as:

ui =
1

N

N∑
j=1

xj
i ; u =

1

M ·N

M∑
i=1

N∑
j=1

xj
i . (2)

Equation (1) is the ratio between the inter-speaker variance and
intra-speaker variance of speech power in a given frequency
band. A larger value obtained in a frequency band means that
more speaker information is encoded in that band.

In Eq. (1), the discrimination measurement that uses F-ratio
is based on a single-mode Gaussian distribution assumption
of the subband power energy variable. It is possible that the
distribution could be multi-mode with a mixture of distri-
butions. In addition, the frequency importance is calculated
in each frequency band independently. Therefore, it cannot
reflect the nonlinear and joint relationship among different
frequency bands. Particularly, the F-ratio-based method cannot
explore speaker-specific information encoded by antiresonance
because antiresonance usually contributes SDI to spectral
valleys with low power energy.

380



B. Frequency-wise attention model

Deep neural network (DNN)-based models have been suc-
cessfully used for ASV. Due to the strong capacity in speaker
discriminative feature extraction, the performance of ASV has
been significantly improved. However, as a black box model-
ing method in DNN, it is difficult to understand which acoustic
features are specifically relevant to speaker discrimination.
Unlike most studies, we obtain information about which fre-
quency components are important for speaker discrimination
by explicitly inserting a frequency-wise attention module in a
DNN-based speaker recognition task. Our method consists of
a frequency-wise attention architecture and a simple ResNet,
which is illustrated in Fig. 1, to learn the importance of each
frequency band. Motivated by channel-wise attention in image
recognition [18], we designed the frequency-wise attention
module to map the input feature X to weighted feature X̃,
and X = [x1,x2, ...,xD], where xi ∈ Rw×h represents
the i-th frequency band of input feature X, h is the frame
index, w = 1, D is the number of frequency components.
Specifically, convolution operations are first carried out in xi

along the time axis using a shared one-dimensional convolu-
tion layer. We then apply global average pooling (GAP) for
each channel to obtain the channel feature Z:

Z = [z1, z2, ..., zD], (3)

where zi represents the feature of the i-th frequency compo-
nent. The importance of each frequency component Z̃ (atten-
tion layer) can be learned after using the softmax function.
The weighted feature map is calculated as follows:

X̃ = Z̃⊗X, (4)

where ⊗ represents the outer product of vectors. The ResNet
includes three one-dimensional convolutional layers combined
with three residual blocks to generate a segment-level feature
for each utterance. Finally, we use the cross-entropy loss as
an objective during the optimization of the entire network.
A detailed description of this ResNet can be found in our
previous study [19].

C. Qualitative and quantitative evaluations

There are several ways to evaluate the learned quantifica-
tion results. For example, whether the dependency of each
frequency component can explain our intuitive knowledge
from the speech production aspect (qualitative evaluations). Or
whether emphasizing each frequency component based on the
learned values can help to improve speaker individuality dis-
crimination and, hence, improve the performance of speaker-
related tasks (quantitative evaluations). In this paper, the
learned result will be evaluated by using these two evaluation
methods.

1) Qualitative evaluation: For qualitative evaluation, the
physiological properties of the vocal tract are essential for
explaining the quantification results. For example, the glottis
is an important articulator to modulate the air input from the
lung. The vibration frequency of a normal adult glottis ranges
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Fig. 2. Comparison of quantification results from using F-ratio-based and
proposed quantification methods. Three different features were used as front-
end input of proposed architecture.
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Fig. 3. Frequency warping for linear, Mel, F-ratio, and proposed scale.

between 60 and 400 Hz due to the differences in glottis length
and stiffness among different speakers [3]. The nasal cavity is
the largest side branch within the vocal tract. The nasal cavity
with the sinuses demonstrates significant SDI from 1 kHz to
2 kHz when producing nasal and nasalized sounds [4]–[6].

2) Quantitative evaluation: For quantitative evaluation, the
learned importance weightings are used to extract the NUFCC,
and they are used to an i-vector-based ASV system to examine
whether an ASV performance has improved. Specifically, to
emphasize the importance of frequency regions with relatively
high quantification scores, the distribution density of the trian-
gular band-pass filters is assigned to be directly proportional to
the average quantification score (Qscore). Qscore is calculated
by:

Qscore =

∑N
i=1 Z̃i

N
, (5)

where N is the number of utterances, Z̃i is the quantification
score of ith utterance. The steps for designing an NUF are as
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Fig. 4. Comparison of NUFs designed with F-ratio-based method (a) and
proposed method (b). Number of filters was 60, and bandwidth of each sub-
band filter was fixed.

follows:
• calculate the weight k based on the Qscore, k =

fs/(2× Sum(Qscore)), where fs is the sampling rate,
• calculate the cumulative Sum of weighted Qscore,

Sum = Cumsum(k ×Qscore),
• fit the curve of the mapping frequency from the linear

scale to the adaptive scale by cubic spline interpolation,
• calculate the center frequency of the triangular band-pass

filters C(i) based on the fitting curve, and
• design an NUF with the same bandwidth.
The designed NUF is used instead of the Mel-filterbank to

obtain a novel NUFCC in the MFCC-extraction process.
The i-vector technique proposed by Dehak et al. [20], [21]

is a commonly used baseline system in speaker recognition.
It establishes a low-dimensional total-variability space that
simultaneously models speaker and channel variability. We de-
signed an i-vector system based on the proposed NUFCC and
implemented it using Kaldi [22] to evaluate the effectiveness
of the proposed quantification method.

III. EXPERIMENTS
A. Database

The Japanese versatile speech corpus [23] consists of audios
from 100 native Japanese speakers. The database was recorded
in a clean environment at a 24-kHz sampling rate. To train our
model, we selected a set of 9,997 sentences from 100 speakers
to learn the nonlinear combined effect of the frequency compo-
nents on speaker identity. All the sentences were downsampled

TABLE I
RESULTS OF OUR DESIGNED I-VECTOR-BASED ASV SYSTEMS IN TERMS

OF EER AND MINDCF BASED ON A JAPANESE DATABASES.

Acoustic feature EER (%) minDCF (0.01)
UFCC 3.092 0.417
MFCC 2.977 0.363

F-ratio-based NUFCC 2.084 0.215
Proposed NUFCC (SLPS) 1.800 0.219

Proposed NUFCC (PS) 1.698 0.236
Proposed NUFCC (SPS) 1.597 0.206

from 24 kHz to 16 kHz. The average length of each utterance
was 7.92 s, and the total length of the speech data was 21.86
hrs. In i-vector-based ASV, the same speech data introduced
above was divided into training (70 speakers) and testing (30
speakers) sets.

B. Experimental conditions

We used power spectrum (PS), subband power spectrum
(SPS), and subband log power spectrum (SLPS) as the front-
end input. The extraction of these three features was without
frequency warping operations. The filterbank used for SPS and
SLPS features extraction was a triangular band-pass filter with
a linear frequency scale, and the dimension was set to 512.
In the frequency-wise attention module shown in Fig. 1, the
kernel size of the one-dimensional convolution layer is (5×1),
and the number of output channels is 64. The dimension of
the attention layer corresponds to the number of frequency
components that were set to 512.

For i-vector-based ASV, the UBM and i-vector extractor
were trained on the training set, and 30,000 test pairs, includ-
ing half positive trials and half negative trials, were randomly
generated from the testing set. The Gaussian mixture number
of UBM was set to 128, and the dimension of the i-vector was
set to 300. We used the equal error rate (EER) and minimum
decision cost function (minDCF) with Ptarget = 0.01 as the
evaluation metrics of the ASV [24].

IV. RESULTS AND DISCUSSION

A. Quantification results using proposed method

Figure 2 shows the speaker discriminative abilities of each
frequency component quantified using the F-ratio-based quan-
tification method and our quantification method. The com-
ments in the parentheses refer to the front-end input feature
types for the training of our method. We compare the two
methods by showing all the results using normalization with
values ranging from 0 to 1. The quantification results show the
distribution of SDI in the frequency domain was non-uniform
and most of the discriminative information concentrated in
the low-frequency region. Using our method with different
input features, we could obtain consistent results with peaks
and valleys located in similar frequency regions on the curves.
Moreover, the quantification results with PS as an input feature
had fewer fluctuations than others.

Figure 3 illustrates the normalized plot of different fre-
quency warping scales to compare our method with other
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methods. We can observe that the frequency warping based
on data-driven methods has a high frequency resolution in the
low-frequency regions (below 400 Hz), which is discrimina-
tive information expected from the glottis based on knowl-
edge from [3]. Compared to the F-ratio-based quantification
method, the normalized scale from our method (red-solid
curve) indicates a higher frequency resolution from 1 kHz to
2 kHz. Based on [5] and [6], this peak is possibly related to
the antiresonance contributed by the nasal cavity and sinuses,
which is another essential factor for speaker discrimination
that the F-ratio method could not reveal.

B. Effectiveness of NUFCC designed with proposed method
for ASV

Based on different frequency warping scales, NUFs can
be designed using the steps described in Section II-C. Two
examples of the designed NUF are depicted in Fig. 4. The
specially designed NUF can extract the speaker features for
ASV. The ASV results in Table I indicate that acoustic
feature extraction using an NUF can substantially improve
speaker discrimination abilities. In addition, NUFCC extrac-
tion with our method can perform better than the F-ratio-based
quantification method in both EER and minDCF. This also
indicates that the quantification results from using our method
can capture more speaker discriminative factors, such as the
relationships among different frequency bands. The NUFCC
feature designed with our quantification method using SPS as
input decreases the EER from 2.084% (F-ratio-based method)
to 1.597, resulting in a relative improvement of 23.4%.

V. CONCLUSION
We quantified the nonlinear combined effect of frequency

components on speaker identity. A frequency-wise attention
structure combined with a ResNet was designed to learn
the importance of different frequency bands by considering
resonance and antiresonance. The quantification results with
our method using three input features consistently indicated
that SDI is non-uniformly distributed in the frequency domain
and most of the discriminative information is concentrated
in the low-frequency region. In addition, the quantification
results from using our method indicated that the antiresonance
frequency induced by the nasal cavity from 1 kHz to 2
kHz is another essential factor for speaker discrimination
that the F-ratio method could not reveal. To further evaluate
our findings, we designed a non-uniform subband processing
strategy based on the quantification results using our method
for speaker feature extraction and did ASV. Finally, compared
with the NUFCC designed with the F-ratio-based method,
NUFCC designed with our method achieved 23.4% relative
improvement in EER. These results also confirmed that further
emphasizing the spectral structure around the antiresonance
frequency region could enhance speaker discrimination.
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