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ABSTRACT

Replay attacks are attempts to get fraudulent access to an au-
tomatic speaker verification system. In this paper, we inves-
tigate the usefulness of voice quality features to detect replay
attacks. The voice quality features are used together with the
state-of-the-art constant Q cepstral coefficients (CQCC) fea-
tures. The two feature sets are fused at the score level. Thus,
the log-likelihood scores estimated from the two feature sets
are linearly weighted to obtain a single fused score. The fused
score is used to classify whether a given speech sample is gen-
uine or spoofed. Our experiments with the ASVspoof 2017
dataset demonstrate that the fusion of log-likelihood scores
extracted from the CQCC and voice quality features improve
the Equal Error Rate (EER) compared to the baseline system
which is based only on CQCC features.

Index Terms— fusion, jitter, replay attack, shimmer,
spoofing

1. INTRODUCTION

In recent years, the increasing availability of plenoptic cam-
eras and research advances in light field capture, processing,
and rendering, have been contributing for a growing interest
in the extended capabilities offered by computational pho-
tography. Such capabilities include, for example, changing
the point of view, refocusing, rendering all-in-focus images,
and computing depth maps from the scene. Unlike traditional
single-image acquisition systems, light fields enable promis-
ing advances in quite diverse application areas, such as mul-
timedia for entertainment, medical, industry, science, etc

Automatic speaker verification is widely used in a range
of applications which require not only robustness to changes
in the acoustic environment, but also resilience to intentional
circumvention, known as spoofing [21]. Spoofing is an at-
tack where a fraudster tries to gain access of the system by
masquerading as an enrolled person in the automatic speaker
verification (ASV) system [16, 21]. The state-of-the-art ASV
system are susceptible to different types of spoofing attacks
such as voice conversion, speech synthesis, and replay at-
tacks [5, 21].

Replay attacks are easy to perform and their threat to the
reliability of ASV has been studied widely [1, 8, 22]. Replay

attacks use recordings of a target speaker’s voice which is re-
played to the ASV system in place of genuine speech [14,19].
A prime example is to record and replay a target speaker’s
voice to unlock a smartphone which uses ASV for access con-
trol.

Recently, replay attacks attracted a lot of attention in the
research community. For example, the ASVspoof 2017 chal-
lenge provided a standard corpora for combating replay at-
tack [4]. The challenge uses the constant Q cepstral coeffi-
cients (CQCC) as the feature set and Gaussian mixture model
(GMM) techniques as a classifier [4, 12]. In fact, most state-
of-the art of anti-spoofing systems, including [4], use CQCC
as a feature set.

After the release of the the ASVspoof 2017 challenge, dif-
ferent types of features have been proposed by different re-
searchers to improve the performance of anti-replay attacks.
For instance, features such as spectral peak mapping filter
cepstral coefficients, subband spectral centroid magnitude co-
efficients (SCMC), subband spectral centroid frequency coef-
ficients (SCFC), Teager energy profiles and others have also
been used to detect replay attacks [7, 9–11, 18].

Thus, the main contribution of this work is that we pro-
pose the use of voice quality features for anti-spoofing sys-
tems, particularly to detect replay attacks. The voice qual-
ity features are used together with the state-of-the-art con-
stant Q cepstral coefficients (CQCCs) features. The voice
quality features are fused with the CQCCs at the score like-
lihood level (i.e., the log-likelihood scores extracted using
CQCC and voice quality models are linearly weighted). We
are interested in voice quality features since jitter and shim-
mer measurements show significant differences between dif-
ferent speaking styles. In addition, since these features have
shown potential for characterizing pathological voices and
linguistic abnormalities, they can be also employed to char-
acterize a particular speaker.

2. VOICE QUALITY FEATURES

voice quality features characterize the glottal excitation of
signal of voiced voices such as glottal pulse shape and fun-
damental frequency, and carry speaker-specific information.
Analysis of the voice quality of a person is a valuable tech-
nique for speech pathology detection [2, 23]. For example,
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Fig. 2: Shimmer measurements for 3 pitch periods

voice-disorders can be analyzed using such acoustic signal
parameters. Unlike the F0, voice quality features do not al-
ways have an acoustic characteristic that is easily distinguish-
able and measurable from a speech signal.

Jitter and shimmer voice quality features measure vari-
ations of the fundamental frequency and amplitude of pitch
periods, respectively. They are very useful to describe the
fluctuations of the voice signal in a qualitative way. They are
given as a percentage that represents the maximum deviation
from a normal frequency or amplitude. There are many pos-
sible jitter and shimmer measurements, but usually it is based
on an auto-correlation method for determining the frequency
and location of each cycle of vibration of the vocal folds (i.e.,
pitch marks) [17].

Jitter and shimmer voice quality features can be used to
detect voice pathologies [20]. They are normally measured
from long sustained vowels where voice quality measurement
values outside a certain threshold are considered as pathologi-
cal voices. In addition, voice quality features are related to the
shape and dimension of the speaker’s vocal tract, and the way
how the speech is generated by the voice production mech-
anism. Jitter and shimmer can also be used to characterize
the age and the gender of a speaker [15]. Moreover, there
are also significant differences in jitter and shimmer measure-
ments between different speaking styles, especially in shim-
mer measurements [13]. Since these features have shown
potential for characterizing pathological voices and linguis-
tic abnormalities, they can be also employed to characterize a
particular speaker.

There are many possible jitter and shimmer measure-
ments. By using Praat [3], one can extract 5 different jitter
and 6 different shimmer measurements.

Although there are different types of jitter and shimmer
measurements as it is explained above, we have extracted 5

different jitter ( and 4 different shimmer measurements en-
couraged by previous work of [6]. It is reported in [6] that
these measurements provide better results for speaker recog-
nition more than the other jitter and shimmer measurements.
We have extracted the following types of measurements: Jit-
ter (local), Jitter (local, absolute), Jitter (rap), Jitter (ppq5),
Shimmer (local), Shimmer (local, dB), Shimmer (apq3) and
Shimmer (apq11). A clear description of these measurements
is found in [3].

3. PROPOSED SYSTEM

To improve the performance of the baseline anti-spoofing sys-
tem, we propose a score-level framework that fuses the infor-
mation provided by CQCC and voice quality features as it is
shown in Fig. 3.

Firstly, the training data is partitioned into two sets: gen-
uine and spoofed. Then, two types of features (i.e., CQCC
and voice quality) are extracted from the genuine and spoofed
data. Afterwards, we train two types of GMM models us-
ing genuine data: one GMM model using CQCC and another
GMM model using voice quality features. Similarly, we train
two types of GMM models using spoofed data: one GMM
model using CQCC and another GMM model using voice
quality features. Then, the log-likelihoods are predicted using
the respective trained models for each feature set. Thus, four
different log-likelihoods are computed using the genuine and
spoofed models for CQCC and voice quality features. Finally,
the log-likelihoods predicted for the voice quality are fused
together with the log-likelihoods predicted using CQCC fea-
tures. The GMM models are learned using expectation max-
imisation (EM) algorithm with random initialisation. Note
that the baseline system uses only CQCC feature set.

Given an unseen test utterance, the CQCC and voice qual-
ity features are first computed. Then, they are scored with
their respective models to obtain the log-likelihood scores.
Afterwards, the two log-likelihood scores predicted using the
two models are combined in a weighted fashion such that
their weights sum to 1. Finally, the combined scores are used
to make a decision (i.e., accept/reject a speech as genuine or
spoofed).

The fused cosine-distance score is calculated as follows:

Λ(X) = α (log L(X|Θn)− log L(X|Θs))+

= ((1− α) (log L(X|ϑn)− log L(X|ϑs))),
(1)

where Λ(X) is the fused log-likelihood score, Θn and Θs

are the genuine and spoofed GMM model using CQCC fea-
tures, respectively and ϑn and ϑn are the genuine and spoofed
GMM model using voice quality features, respectively. In ad-
dition, two different weights are applied on the predicted log-
likelihood scores. While α weights the log-likelihood score
predicted using CQCC, (1 − α) weights the log-likelihood
scores from the voice quality features.
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Fig. 3: The proposed replay attack detection system using
CQCC and voice quality features. The baseline system is
based only on CQCC features. While the arrows in black (un-
dotted) correspond to training phase, the arrows in red (dot-
ted) correspond to evaluation.

4. EXPERIMENTS

4.1. Experimental Setup

This work used the ASV Spoof 2017 challenge version 2.0
database [4]. The ASV Spoof 2017 database was collected in
order to foster the development of countermeasures to protect
ASV systems from replay spoofing attacks. It is partitioned
into three subsets: training, development and evaluation. The
number of files in the training, development and evaluation
set are 3014, 1710 and 13306, respectively.

The baseline system [4] uses the CQCC feature set. The
maximum and minimum frequency values are set to 8 kHz
and 15 Hz, respectively. The number of bins per octave is 96
and the total number of CQCC features extracted include 19
static coefficients, log-energy, deltas, and delta-delta. Thus,
the CQCC has a feature vector of length 60. After the ex-
traction of CQCC features, the means and variances are nor-
malized. The voice quality features are extracted over 30 ms
frame length and at 10 ms shift using Praat [3]. Each of the
voice quality features are then estimated over a 500 ms win-
dow with 10 ms shift. This is done to smooth out the feature
estimation of the unvoiced frames. It is also done to synchro-
nize the voice quality features with CQCC. Both the baseline
and the proposed system uses GMM classifier for modeling
the classes corresponding to natural and spoofed speech utter-
ances. Since the size of CQCC feature is 60, we set its GMM

Fig. 4: Equal Error Rate (EER) of the development set when
the weight of CQCC is tuned. The baseline system has weight
value of 1.

components to 512. But, since the voice quality features has
only 9 features, its GMM components is set to 128.

4.2. Experimental Results

We chose to use the work of [4] as a baseline system. We
further selected the best results from [4] to compare the per-
formance of the proposed system. The performance of the
proposed and baseline systems were compared with three dif-
ferent experiments. The first system uses the training dataset
(3710 files) as a training set and uses two test sets: develop-
ment and evaluation. The second system uses the develop-
ment set (1710 files) as training, and uses two test sets: train-
ing and evaluation. Finally, the training and development sets
are pooled together (i.e., 4724 files) and are used as a training
test, and the test is carried out on the evaluation set.

To find the best weight values for CQCC and voice quality
features, we experimented with different values for the weight
on the development set as it is shown in Fig. 4. The figure
shows that the fusion of voice quality features with CQCC
using different weight values provides better EER compared
to the baseline system. Since the best EER value is found
when the weight of CQCC is 0.85, we have used weight of
0.85 for CQCC and 0.15 for voice quality features for the
results reported in Table 1.

From the results of Table 1, we see that the baseline sys-
tem which uses the training data as a training set provides an
EER of 9.06% and 13.74% on the development and evalua-
tion sets, respectively. The table further shows that the fusion
of voice quality features with CQCC gives an EER of 7.6%
and 12.3% on the development and evaluation sets, respec-
tively. Thus, the results show that the addition of voice qual-
ity measurements to the CQCC feature set provides a 16%
and 10.48% relative EER improvement on the development
and evaluation sets, respectively.

Similarly, Table 1 shows that when the development set is
used as a training set, the baseline system provides an EER
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Training
T D T + D

Evaluation D E T E E
CQCC [4] 9.06 13.74 5.66 14.77 12.24

CQCC + JS 7.6 12.3 4.01 13.2 10.9

Table 1: Replay detection performance in terms of Equal Error
Rate (EER) for the ASVspoof 2017 Version 2.0 database for
training (T), development (D) and testing (T) configurations.
JS represents jitter and shimmer voice quality measurements.
Note that the baseline system EER (i.e, CQCC) results are
taken from the work of [4].

of 5.66% and 14.77% on the training and evaluation sets, re-
spectively. The table further reveals that the augmentation
of voice quality features with CQCC on the same dataset pro-
vides EER of 4.01% and 13.2% on the training and evaluation
sets, respectively. These improvements represent a 29.15%
and 10.62% relative EER improvement on the training and
evaluation sets, respectively.

In a final experiment, we pooled the training and devel-
opment files together and used them as a training set of 4724
files. The table shows that the baseline system provides an
EER of 12.24%. However, the addition of voice quality fea-
tures to the CQCC reduces the EER to 10.9%. This repre-
sents almost an 11% relative EER improvement compared to
the baseline system.

The histogram plots of log-likelihood scores obtained
from Gaussian mixtures corresponding to (a) CQCC, (b)
voice quality features and (c) CQCC + voice quality fea-
tures are shown in Fig. 5. The log-likelihood scores are for
the evaluation set. From the figure, we see that the log-
likelihood scores of the voice quality scores of both natural
and replay are distributed more resulting in lower % EER as
compared to the distribution obtained from CQCC. When the
log-likelihood scores of CQCC and voice quality are fused,
the scores of CQCC and voice quality are multiplied by 0.85
and 0.15, respectively.

In addition, the work in [4] also reported results of re-
play attack detection without mean variance normalization
and without log energy. Thus, in order to further assess the
impact of voice quality features, we have also made another
set of experiments where the log-energy is not used at all and
no normalization is carried out. Similar to the results reported
in Table 1, our experimental results showed that the fusion
of voice quality features with the CQCC, irrespective of log-
energy and normalization, always provides better EER than
the baseline system which is based only on CQCC features,
respectively.

Thus, the results reported in Table 1 demonstrate that the
long-term voice quality features provide useful and comple-
mentary speaker information. The experimental results show
that adding jitter and shimmer voice quality features to the
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Fig. 5: Histogram of log-likelihoods scores of CQCC, voice
quality, and CQCC + voice quality. The weights of CQCC
and voice quality features are 0.85 and 0.15 in (c), respec-
tively.

baseline CQCC features reduce the EER values. In overall,
the use of voice quality features together with CQCC ones in-
crease the robustness and reliability of anti-spoofing systems.
Note that this work analyzed the robustness of voice quality
to spoofing, not background noise.

5. CONCLUSIONS

In this work, we have proposed the use of jitter and shimmer
voice quality measurements as a complementary source of in-
formation to detect replay attacks. The experimental results
carried out on ASVspoof 2017 database demonstrate that the
fusion of the log-likelihood scores of voice quality with the
log-likelihood scores of CQCC improves the performance of
anti replay attacks. The experimental results show that the
augmentation of voice quality features with CQCC provide
11% relative EER improvement compared to using CQCC
features on the evaluation set of ASVspoof 2017 database.
Thus, the results reported in this work demonstrate the use-
fulness of voice quality measurements as a complementary
source of information to detect replay attacks.

The future work could focus on applying deep neural net-
work techniques on these long-term voice quality measure-
ments to reduce the EER of anti-spoofing systems.
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