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Abstract—This paper introduces voice reenactement as the task
of voice conversion (VC) in which the expressivity of the source
speaker is preserved during conversion while the identity of
a target speaker is transferred. To do so, an original neural-
VC architecture is proposed based on sequence-to-sequence
voice conversion (S2S-VC) in which the speech prosody of the
source speaker is preserved during conversion. First, the S2S-
VC architecture is modified to synchronize the converted speech
with the source speech by phonetic duration encoding; second,
the decoder is conditioned on the desired sequence of F0-values
and an explicit F0-loss is formulated between the F0 of the
source speaker and the F0 of the converted speech. Finally,
adversarial learning of conversion is integrated within the S2S-
VC architecture to exploit advantages of both reconstruction of
original speech with ground truth and converted speech with
manipulated attributes. An experimental evaluation on the VCTK
speech database shows that the speech prosody can be efficiently
preserved during conversion, and that the proposed adversarial
learning consistently improves the conversion and the naturalness
of the reenacted speech.

Index Terms—Voice conversion, voice reenactement, prosody
preservation

I. INTRODUCTION

A. Context and Related works

Voice conversion (VC) consists of digitally altering the voice
of an individual — e.g., its identity [1], accent [2], emotion
[3], pitch [4] or intensity [5] — while maintaining its linguistic
content unchanged. Primarily applied to identity conversion,
VC has considerably gained in popularity and in quality thanks
to neural VC [6]–[8]. Neural VC is now widely considered as a
standard in VC and has reached a highly-realistic rendering of
voice identity conversion from a small amount of data of a target
voice. Similarly to face manipulation, voice conversion has
a wide range of potential applications, such as voice cloning
and deep fake in the fields of entertainment and fraud [9],
anonymization of voice identity in the field of security and
data privacy [10], [11], or digital voice prosthesis of impaired
speech in the field of digital healthcare [12].

Since its first application to parallel data in the early 2000’s,
neural VC has gradually moved towards many-to-many and non-
parallel datasets. This allows scalability of neural VC to large
and multiple-speakers datasets with the assumption that the
increase of data will induce a substantial imporovement in terms
of quality and naturalness of the VC. In particular, starGAN-
VC [13], [14] has been proposed to extend the paradigm of
cycle-GAN to many-to-many and non-parallel VC by proposing
a conditional encoder-decoder architecture. As opposed to the

cycleGAN-VC, starGAN-VC is composed of a single encoder-
decoder in which the decoder is conditioned on the speaker
identity to be converted. In the starGAN-VC, a discriminator is
employed to distinguish between real original speech and fake
converted speech together with a speaker classifier is employed
to determine whether the converted speech has been produced
by the target speaker. As in cycleGAN, a cycle-consistency loss
attempts to preserve the linguistic content during conversion.
To ensure linguistic preservation during conversion, phonetic
posterior-grams (PPGs) [15], [16] have been proposed to
explicitly integrate linguistic content information by means
of time-aligned phonetic posterior probabilities that are used
to condition the conversion.

More recently, neural VC architectures have reformulated
the VC problem as a simple auto-encoder [1], [17], [18]
(further referred to as AE-VC). The underlying idea is to
provide a more structured representation of the information
in the process of VC, in particular by explicitly encoding
and disentangling linguistic content. VC is then achieved by
manipulating the speaker identity by conditioning the decoder
on the desired speaker identity. This has been achieved either
by carefully tuning a bottleneck to encode only the linguistic
content information as in [18] or through adversarial learning
of linguistic content and speaker identity codes as in [1]. The
advantage of those architectures is that the ground truth is
known during training, so that a simple reconstruction loss
can be efficiently applied (as opposed to the starGAN-VC).
Moreover, linguistic and speaker information are explicitly
represented and learned through disentanglement, which should
ideally provide a more accurate control during conversion.
Those architectures have opened the possibility of processing
VC from a very small number of examples of the target speaker
(at the extreme from one-shot [17] or zero-shot [18]). One
important assumption of these architectures relies on the fact
that though a simple reconstruction is used during training
(thus no conversion is actually learned), the manipulation
of the speaker identity is still effective during conversion.
However, this might seem somehow inconsistent since the
actual conversion is not used during training (as opposed to
the starGAN-VC).

B. Limitations and Contributions

Though VC systems can now achieve highly-realistic voice
identity conversion [7], [8], the only information which is
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assumed to be preserved from the source speaker during
conversion is the actual linguistic content of the spoken
utterance (i.e., the text transcript). This constitutes an important
limitation of current VC systems since one could desire to
preserve some aspects of the source speaker during conversion,
e.g., the prosody and the expressivity of the source speaker.
By direct analogy with image processing, face reenactement is
defined by preserving the expression of the source face while
converting the identity to the one of a target face [19]. This
provides a more flexible and controllable transformation as it
is commonly known as deep fakes, in which the source face
provides the desired pose and expression to be rendered with
the target identity.

The same definition can be applied in voice conversion,
which will be further referred to as voice reenactement. Voice
reenactement aims at preserving some aspects of the prosody
of the source speaker during conversion, namely timing and
fundamental frequency (F0) both being commonly considered
as the most important aspects of speech prosody. Though
timing is ineherently preserved in some VC architectures such
as cycleGAN-VC or starGAN-VC, this is not the case for
all architectures including some of the aforementioned VC
architectures based on auto-encoders. Besides, the only research
to date to the knowledge of the authors on the F0-preservation
of the source speaker in VC has been proposed by [20], which is
solely obtained by conditioning the decoder of Auto-VC on the
desired sequence of F0-values. Moreover, AE-based VC suffers
from the fact that the conversion is actually not learned during
training while the GAN-based VC suffers from the fact that
no ground truth is available to learn the conversion. However,
research on face manipulation including the original starGAN
[21] have presented strategies that can make both advantage of
reconstruction of the original real data and adversarial learning
of the manipulated data [22]. The main contributions of this
paper can be listed as follows:

1) The task of voice reenactement is introduced with the
objective of preserving the expressivity of the source
speaker during conversion while transferring the identity
of the target speaker;

2) An original solution to this task is presented by preserving
the timing and the F0 of the source speaker during
conversion within a S2S AE-VC architecture [1]. In
particular, a F0-loss is explicitly formulated and exploited
during training;

3) Inspired by the original formulation of the starGAN, an
adversarial learning of identity conversion is integrated
within the AE-VC architecture to exploit advantages of
both reconstruction of original speech with ground truth
and conversion during training.

II. PROPOSED METHOD

A. Original S2S Neural VC

The VC framework used in this paper is rooted on a sequence-
to-sequence (S2S) auto-encoder as proposed in [1], in which
disentangled linguistic and speaker representation are encoded

through dedicated encoders as illustrated in Figure 1. The inputs
of the system are the speech signal matrix A represented by the
Mel-spectrogram computed on T time frames, and the sequence
of T phonemes p corresponding to the phonetic transcription of
the input text aligned to the corresponding speech signal. Dual
encoders Ec and Es are employed to encode linguistic content
and speaker information. The speaker encoder Es converts the
speech signal A into a time-independent vector hs, since it is
assumed that the identity of a speaker does not vary within an
utterance. A speaker classification loss LSE is defined between
the speaker identity predicted from hs and the true speaker
identity s. The content encoder Ec converts either the phoneme
sequence p or the speech signal A into a shared linguistic
embedding Hc through a contrastive loss. Contrary to [1], the
linguistic embedding has the same length T as the aligned
phoneme sequence (and the Mel-spectrogram), so that the time
information is preserved during encoding. A S2S decoder Ga

conditioned on the content embedding Hc and the speaker
embedding hs is employed to reconstruct an approximation Â
of the original speech signal A. A reconstruction loss LRC

is defined between the reconstructed speech signal Â and
the original speech signal A. During training, the S2S-VC
neural network is pre-trained on a multi-speakers dataset, and
then fine-tuned with respect to a given pair of source and
target speakers. During conversion, the content encoder Ec

computes the content embedding Hc
src corresponding to one

utterance Asrc of the source speaker; and the speaker encoder
Es computes the speaker embedding hs

tgt corresponding the
one utterance Atgt of the target speaker. Then, decoder Ga

is conditioned on the linguistic embedding Hc
src and the

speaker embedding hs
tgt to generate the utterance Btgt with

the identity of the target speaker. Without explicit notification,
the architecture and parameters of the S2S-VC are the same
as those described in [1].

B. Pre-processing and Post-Net

The S2S-VC operates on a Mel-spectrogram representation
of the speech signal. For the signal analysis we follow the
parameterization proposed in [23], that is the input signal
is down-sampled to 16kHz, converted into an STFT using a
Hanning window of 50ms with hop size of 12.5ms and an
FFT size of 2048. We then use 80 Mel bins covering the
frequency band from 0 to 8Khz and convert the result into log
amplitude domain. We normalize the log Mel-spectrograms
by normalizing each frequency bin separately to mean and
standard deviation of the whole dataset. For rendering the
speech signal from a generated Mel-spectrogram we use the
mel-inverter from [24].

C. Proposed S2S Neural Voice Reenactement

1) S2S-VC with time-synchronization and F0-conditioning:
S2S-VC architecture does not ensure time-synchronicity be-
tween the original speech and the converted speech, by
definition of the sequence-to-sequence architecture. The S2S-
VS is essentially composed of a speech-to-text encoding time-
compression and a text-to-speech decoding time-decompression
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Fig. 1. Architecture of the proposed S2S-VC system. On left: The original VC comprises content and speaker encoder Ec and Es, and a decoder Ga which
reconstructs the speech signal Â conditioned on content embedding Hc and speaker embedding hs. A pre-trained F0-analysis module EF0 is used to calculate
an F0 loss between the F0 of the original speech signal and the F0 of the reconstructed mel-spectrograms. On right: During conversion, content embedding
Hc

src and F0 hF0
src is extracted from speech signal of the source speaker and the speaker embedding hs

tgt of the target speaker.

with a similar architecture as Tacotron [25]. In order to preserve
time-synchronization between the original and the reconstructed
speech signals, the time dimension of length T is preserved
all through the network, from the original speech signal A to
the linguistic embedding Ht, and to the reconstructed speech
signal Â. To do so, the auto-regressive S2S part of the content
encoder Et and the decoder Ga are modified accordingly
by employing simple recurrent architectures. The content
encoder Et is composed of two bidirectional LSTM layers of
dimension 128 followed by a fully connected layer (FC) of
dimension 128, resulting in a linguistic embedding of dimension
(128×T ). The decoder Ga is using two bidirectional LSTMs of
dimension 128 each and a Fully Connected layer of dimension
80 which outputs an approximated Mel-spectrogram with the
same dimensions as the input Mel spectrogram, i.e., (80× T ).
These simplifications enable time-synchronous conversions and
a consequent saving in computational time: approximately 33%
of the computational time for training on our server with a
single GPU.

In order to preserve the F0 of the original speech signal
during conversion, an F0-loss is explicitly formulated. F0 values
for real recordings are obtained with [26]. To obtain F0 values
on the synthetic mel-spectrograms we pretrain an F0-analysis
module on the mel-spectrograms of real audio. The F0-loss
is then calculated as the mean square error between the F0
values of the generated speech ĥF0 and the F0 values of the
original speech hF0

LF0
(hF0, ĥF0) =

1

T

T∑
t=1

(hF0(t)− ĥF0(t))2 (1)

The architecture of the F0-analysis module is the same as
in [24] and is trained with F0-curves where the values are
set to zero for unvoiced frames. Contrary to [20] this loss

explicitly constrains the F0 to the desired F0 by defining a
dedicated loss. This ensures that the F0 of the converted speech
is effectively preserved during conversion. This loss is added
to the reconstruction loss with a weight λF0 varying linearly
from 10−6 to 10−2 with the effect of increasing gradually the
importance of the F0 preservation versus the reconstruction loss
during training. During conversion, the F0 can be transferred
from an utterance of a source speaker or fixed arbitrarily (e.g.,
by applying transposition or setting any arbitrary values). In this
paper, the F0 used for conditioning was adapted to the range of
the target speaker in order to prevent unnatural converted speech
that would be caused by some important difference between the
respective ranges of the source and target speakers (typically
when converting a male to a female or conversely). This was
accomplished by normalizing the F0 values corresponding to
the sentence of the source speaker with respect to the log(F0)
mean and standard deviation of the target speaker.

2) Adversarial Training of S2S-VC: S2S-VC essentially
relies on an auto-encoder optimizing a reconstruction loss
between the original speech signal and the reconstructed one.
Thus actual conversion is never evaluated during training. In
the case of a conversion, one does not have access to the
ground truth speech signal and thus one cannot apply the
reconstruction loss of the auto-encoder. To overcome this
limitation and construct a VC system whose training is more
consistent with conversion, we propose to split the training
process into two modes, as inspired by the original starGAN
[21]: a reconstruction loss corresponding to the classical auto-
encoder in which the reconstruction loss can be computed
and an adversarial loss, in which we assume that the true
speech signal may not be available. This is typically the case
in which at least one of the codes conditioning the decoder is
manipulated. For this mode, we introduce an adversarial module
which is similar to the one used in a GAN. A discriminator
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TABLE I
ROOT MEAN SQUARE ERROR OF THE RECONSTRUCTED F0 (IN HZ.).

VC system M-to-M F-to-F M-to-F F-to-M
F0 cond w/ adv. same id 2.712 5.686 2.970 5.090
F0 cond w/ adv. diff id 2.574 6.246 4.171 5.252

Dadv is optimized to distinguish between the real speech
samples and the converted ones, while the decoder Ga is
optimized to fool the discriminator. During training, each
samples contained in a batch is both passed to the decoder in
the reconstruction mode with original unchanged codes and in
the conversion mode with unchanged or manipulated codes. In
this paper, only the speaker identity is manipulated so that the
reconstruction has the right identity and the conversion mode
a randomly picked identity. The total loss LGEN including
reconstruction and conversion losses can then be expressed as,

LGEN = LRC + λadv LADV + λF0 LF 0 (2)

The discriminator has a 2D fully-convolutional structure with
alternating 3 × 3-convolutions and strided convolutions for
downsampling. The strides follow the pattern 2, 2, 2, 2, 5 on
the frequency axis and 2, 1, 2, 1, 1 on the time axis. In total
there are 10 convolutional layers, each with 128 filters, except
the last one, which has one.

III. EXPERIMENTS

A. Speech dataset

The English multi-speaker corpus VCTK [27] is used for
training and testing. The VCTK dataset contains speech data
uttered by 110 speakers and the corresponding text transcripts.
Each speaker read about 400 sentences which effectively
amounts to 27h of speech after preprocessing. All speakers
are included into the training and validation sets. For each
speaker, we split the database in a training set with 90% of
the sentences and a validation set with 10% of them.

B. Subjective Experiment Setup

The experiment consisted of the judgment by listeners of:
the similarity of the converted speech to the target speaker
and the naturalness of the converted speech, using 5-degree
MOS scale as commonly used for the experimental evaluation
of VC algorithms. Each participant had to judge 15 speech
samples which were randomly selected among the total number
of speech samples produced for the subjective experiments. The
experiment was conducted online. Participants were encouraged
to perform the experiment in a quiet environment and with
headphones. Four speakers were used for the experiment:
two males (p232 and p274) and two females (p253 and
p300) with eight randomly chosen sentences per speaker
from the validation set. Conversion were computed between
male speakers and between females speakers, resulting in two
male and two female conversion setups. We compare three
configurations for converted speech with the ground truth: 1)
time-synchronous and F0-preserved VC system, referred to as
F0 cond., 2) time-synchronous and F0-preserved VC system

with discriminator trained only with the true speaker identity
(same identity as the source speech utterance), referred to as F0
cond. w/adv same id and 3) time-synchronous and F0-preserved
VC system with discriminator trained only with varying speaker
identities (different identities from the one of the source speech
utterance), referred to as F0 cond. w/adv diff id 1.

C. Results and Discussion

Table I presents the root mean squared error of the F0 of
the converted speech with the proposed configurations for the
4 speakers used in the experiment. The error is around 5 Hz.
in average which is not audible in most cases. This shows
the efficiency of the proposed F0 preservation strategy, even
in combination with the adversarial loss. Table II presents
the mean MOS scores of the compared configurations and
the ground truth recordings, obtained from 25 participants.
The baseline VC system using time-synchronization and F0
preservation presents fair to good similarity to the target speaker
(MOS=3.92 for similarity), even though the timing and the F0
contours is inherited from the source speaker. The naturalness
is also rated in the fair range (MOS=3.09). One can observe
that the naturalness is worse for female speakers (MOS=2.85)
as compared to the male speakers (MOS=3.38). These results
are consistent with the ones obtained in the literature about
S2S-VC [1]. This indicates that the application of a timing
and an F0 contour from a different speaker does not degrade
consistently neither the similarity nor the naturalness of the
converted speech.

The proposed VC system with time and F0 preservation
together with adversarial loss on varying speaker identities
improves the scores in almost all cases compared to the
baseline. The overall similarity to the target speaker is good
(MOS=4.06) and the naturalness of the conversion is fair
(MOS=3.18). The improvement in similarity is particularly
substantial for the female speakers (MOS=4.23) while at the
same time the difference in naturalness between the male
and female conversions is much less pronounced (MOS=3.16
for male speakers and MOS=3.21 for female speakers). This
indicates that the addition of the discriminator not only helps to
improve the naturalness of the converted speech (by suppressing
perceptible artifacts) but also increases the similarity to the
target speaker. Also, the use of varying speaker identities with
the adversarial loss improves the scores in all cases compared
to using only the true identity of the speaker. This is probably
mainly due to the fact that the discriminator is being more
efficient when subject to a larger variety of sentence and speaker
identities.

IV. CONCLUSION

This paper presented a S2S-VC algorithm which allows to
preserve the timing and the F0 of the source speaker during
conversion. Moreover, an adversarial module is added so that
the S2S-VC can learn both from real speech samples as well
as manipulated ones. Experimental evaluation on the VCTK

1Converted speech samples are available at: http://recherche.ircam.fr/anasyn/
obin/VC EUSIPCO22.html
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TABLE II
MOS OBTAINED FOR THE DIFFERENT VC SYSTEMS.

VC system Male-to-Male Female-to-Female TOTAL
Similarity Naturalness Similarity Naturalness Similarity Naturalness

Orig: target speaker 4.92 4.94 4.98 4.97 4.98 4.96
F0 cond. 3.90 3.38 3.93 2.85 3.92 3.09
F0 cond w/ adv. same id 3.90 3.15 3.94 2.91 3.96 3.14
F0 cond w/ adv. diff id 3.91 3.16 4.23 3.21 4.06 3.18

speech database has shown that the F0 is effectively preserved
during conversion and that the adversarial module clearly helps
to reduce the audible artifacts of the conversion as well as
improve the perceived identity of the converted speech. Further
research will investigate the manipulation of timing and F0
during training, in addition to the speaker identity.
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