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Abstract—High intra-class variance is one of the significant
challenges in solving the problem of acoustic scene classification.
This work identifies the recording location (or city) of an audio
sample as a source of intra-class variation. We overcome this
variation by utilising multi-view learning, where each recording
location is considered as a view. Canonical correlation analysis
(CCA) based multi-view algorithms learn a subspace where
samples from the same class are brought together, and samples
from different classes are moved apart, irrespective of the views.
By considering cities as views, and by using several variants
of CCA algorithms, we show that intra-class variation can be
reduced, and location-invariant representations can be learnt.
The proposed method demonstrates an improvement of more
than 8% on the DCASE 2018 and 2019 datasets, when compared
to not using the view information.

Index Terms—Acoustic scene classification, intra-class
variation, multi-view learning, canonical correlation analysis.

I. INTRODUCTION

The task of acoustic scene classification (ASC) involves
assigning a label such as ‘park’, ‘metro station’ etc. to an
audio recording, indicating the surroundings from where the
audio was captured1. Overcoming high intra-class variation
continues to be a challenge faced by practical ASC systems.
In many situations, the recording location adds to the intra-
class variability. For example, in the DCASE 2018 dataset,
data for various acoustic scenes are captured in different
cities (Helsinki, London etc.) Nevertheless, there are certain
sounds in the acoustic scenes which are common irrespective
of their recording location. For example, the ‘airport’ scene of
London shares several acoustic events with the ‘airport’ scene
of Helsinki.

In this paper, we try to overcome the intra-class variation
due to different recording locations by considering them as
different views. Typically, the multiple views in multi-view
learning correspond to different modalities of data from an
observation: for example, in a person identification task, one
view could be the video of the speaker, and another view could
be the audio. In computer vision, different poses or viewing
angles of a scene can be considered as different views [1].

The main contribution of this work is to consider recording
locations (cities) as different views, and use multi-view
learning to bring together the views from the same class and
move apart the views from different classes. Specifically, the
contributions of this paper are:

1https://dcase.community/challenge2018/index

• We show that the city corresponding to an audio scene
can be regarded as a source of intra-class variation.

• We formulate the problem of ASC in a multiview
paradigm to deal with this variation.

• We compare the performance of single-view and multi-
view frameworks, and also compare the performance of
different multi-view algorithms for this task.

Before applying multi-view analysis, we show that the ASC
data we use satisfy the requirements of multi-view learning.
After this, unsupervised canonical correlation analysis-based
multi-view learning algorithms [2] are used on the views
to derive location-invariant representations. The presence
of classwise common acoustic events across the multiple
recording locations motivates us to focus on the consensus
principle of multi-view learning, which in turn is used by the
CCA-based multi-view learning methods.

The remainder of this manuscript is organised as follows: In
section II, multi-view learning is briefly reviewed. Section III
describes the multi-view CCA method and its application on
ASC task. Section IV describes the experimental evaluations.
Finally, the conclusion and future work is presented in section
V of the paper.

II. RELATED WORK

Various methods have been proposed to reduce intra-
class variation. In [3], the authors proposed adversarial
multi-task learning to learn domain-invariant representations
for speech recognition, where different noise conditions
correspond to different domains. In [4], a new loss function
was suggested to increase the intra-class compactness to learn
better representations for the task of speaker verification.
For the same task, the authors in [5] introduced a training
method that reduces the intra-class variation by decreasing
the mutual information between speaker-related and speaker-
unrelated embeddings.

Multi-view learning methods have been used to reduce intra-
class variation in domains like computer vision [6] [7], and
natural language processing [8]. Xu et al. [1] provide an
overview of multi-view learning, its fundamental principles,
and its different types (co-training, multiple-kernel learning,
and subspace learning). CCA-based multi-view learning falls
under the umbrella of subspace based multi-view methods. A
good review on CCA-based methods can be found in [9]. CCA
[2] is a two-view subspace learning method constructed on the
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idea of maximizing correlation between the views. Livescu et
al. [10] used it for speaker recognition wherein acoustics and
videos of the speaker’s face form the two views. However,
CCA learns only linear transformations. Kernel Canonical
Correlation Analysis (KCCA) deals with this limitation. It is a
kernel variant of CCA and computes a non-linear relationship
between the views. Raman et al. [11] used it to learn non-linear
transformations of features for phonetic frame classification.
The same authors, in another work [12] tested the same
features for domain or speaker independence. Andrew et al.
[13] proposed a deep variant of CCA called Deep Canonical
Correlation Analysis which learns better representations than
both CCA and KCCA.

The above mentioned methods use only two views in their
respective multi-view formulations. CCA variants like Multiset
Canonical Correlation Analysis (MCCA) works on two and
more than two views. Somandepalli et al. [14] introduced
a deep version of MCCA called Deep Multiset Canonical
Correlation Analysis (dMCCA) which uses deep learning
to learn maximally correlated non-linear representations and
used it for Noisy-MNIST dataset classification. The authors
in [15] used dMCCA for speaker and speech command
classification. Speech command classification uses multiple
speakers as multiple views, whereas speaker classification
considers various speech commands from the same speaker as
multiple views. In other wok, phan et al. [16] used multiple
feature representations of audio data (Mel-scaled spectrogram,
Gammatone spectrogram, Constant-Q transform spectrogram
and raw-audio) as multiple views to perform audio and music
classification tasks.

III. MULTI-VIEW CCA

The benchmark datasets for ASC task, like DCASE
2018 and 2019, contain data for different scenes (classes)
collected across multiple cities. We attempt to develop
location-independent representations for an acoustic scene by
considering data across multiple cities as its multiple views.
The foundation of multi-view learning algorithms is based
upon either consensus or complementary principle [1]. In this
work, CCA-based multi-view learning methods are used that
are built upon the consensus principle, which aim to maximize
the agreement amongst the multiple views.

We begin by considering the data of all classes from
two cities, as two views represented by the matrices C1, C2

∈ Rd×N containing N examples, each of d dimensions.
Exploiting the consensus principle, CCA-based methods
aim to find maximally correlated projection matrices W1,
W2 ∈ Rd×K corresponding to the two cities, where
K represents the projection dimension. The problem of
determining these projection matrices can be formulated as a
constrained optimization problem, with the objective function
and constraints given by [9]:

max
w1,w2

wT
1 C1C

T
2 w2

s. t wT
1 C1C

T
1 w1 = 1,

wT
2 C2C

T
2 w2 = 1

(1)

where w1 and w2 are projection vectors forming the columns
of W1 and W2 respectively. The same procedure is repeated K
times for each projection matrix, with an additional constraint
that all K sets of projection vectors must be different from
each other [17].

In this work, we have used three CCA-based unsupervised
multi-view learning algorithms, namely Multiset Canonical
Correlation Analysis (MCCA), Kernel Multiset Canonical
Correlation Analysis (KMCCA), and Deep Multiset Canonical
Correlation Analysis (dMCCA). Each of these algorithms is
a formulation of the multi-view problem as a constrained
maximization problem, as discussed earlier. In MCCA [17],
linear projections are computed corresponding to m views by
solving the following constrained optimization problem

max
w1,w2,....,wm

∑
i<j

wT
i CiC

T
j wj

s. t wT
i CiC

T
i wi = 1 ∀i, j ∈ {1, . . . ,m}

(2)

where Ci ∈ Rd×N is the ith view matrix and wi ∈ Rd is the
corresponding projection vector.

In KMCCA [17], non-linear projections are computed for
the views. Initially, a kernel method is used to project data to a
higher dimension. Following this, the projection vectors can be
determined by solving the following constrained optimization
problem

max
w1,w2,....,wm

∑
i<j

wT
i ΦiΦ

T
j wj

s. t wT
i ΦiΦ

T
i wi = 1 ∀i, j ∈ {1, . . . ,m}

(3)

where Φi is the projection of Ci in the higher dimensional
space. The power of deep neural networks (DNNs) is used by
dMCCA [14] to learn complex transformations present in the
data and provide better projections. The optimization problem
for dMCCA is re-formulated by replacing the view matrix Ci

with Hi = fi(Ci) in (2), where fi is the non-linear functional
mapping the DNN’s input to its output, corresponding to ith

view. For more details on MCCA and KMCCA, we refer the
readers to the reference [17], and [14] for dMCCA.

Fig. 1: Projection matrix generation for the multi-view
framework. Different colors in a view matrix correspond to
different classes.

In this work, we first construct the data in the form of
multiple views using ‘view generation’ (refer subsection IV-B)
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then obtain the projection matrices corresponding to each view
as described in figure 1. Each view matrix Ci is given as
an input to the multi-view algorithm to obtain the respective
projection matrix Wi. An audio sample x (a column of Ci)
is projected onto the multi-view space (subspace learnt by the
multi-view algorithm) as:

p =
[
(WT

1 x)T (WT
2 x)T . . . (WT

mx)T
]T

(4)

where p ∈ RKm is the multi-view projection of x and
Km is the dimension of the multi-view space. The multi-
view embeddings computed for all the audio samples are then
provided as an input to a classifier.

IV. EXPERIMENTAL EVALUATION

In this section, the experiments performed for the multi-
view framework for acoustic scene classification are described.
The objective is twofold:

• To study the performance gains provided by multi-view
processing of recording locations.

• To evaluate different feature representations in the above
framework, as well as comparison with other methods.

A. Dataset description

We use DCASE 2018 and 2019 ASC (subtask ‘A’)
development datasets containing audio samples for 10 classes
[18]. DCASE 2018 contains audio recordings from six
European cities namely Barcelona (B), Helsinki (H), London
(L), Paris (P), Stockholm (S), and Vienna (V). DCASE 2019
contains data from Lisbon (Li), Lyon (Ly), Milan (M), and
Prague (Pr) in addition to the cities present in DCASE 2018.
Thus, the number of views m is 6 and 10, respectively for
these two datasets.

B. View generation

In the data distributed with DCASE, it is not guaranteed that
the number of recordings per class are same across all cities.
The underlying assumption in multi-view learning requires the
same number of observations per view. The DCASE protocols
permit data augmentation, and hence we use a variant of
mixup [19] data augmentation scheme to satisfy the above
mentioned constraint. We perform class-wise mixup [20] for
each view, which takes two features x1 and x2 derived from
their corresponding raw audio samples, and generates a new
feature x3 of the same view and class by taking a convex
combination:

x3 = αx1 + (1− α)x2 (5)

where α ∈ U(0, 1) i.e α is drawn from a uniform distribution.
Table I show the number of training examples in each city
before and after class-wise mixup for DCASE 2018 and 2019.
After this step view generation is complete. View generation is
followed by view validation. The multiple views must satisfy
the properties of ‘view dependency’ (correlation between the
views) and ‘view sufficiency’ (each view is sufficient for
classification on its own) as apart of view validation [1].

Figure 2 represents the histogram of pairwise inter-view
correlation for DCASE 2019 dataset computed by considering

correlation coefficients of examples from matched classes,
across multiple views. The positive correlation between views
indicates view dependency.

Fig. 2: Inter-view correlation histogram of original features
from matched classes, across multiple views for DCASE 2019
dataset.

Fig. 3: View specific classification performance for DCASE
2019; refer to section IV-A for city name expansions.

For verification of the ‘view sufficiency’ property, we
construct view-specific classifiers and evaluate their respective
classification performance by testing on the same view data.
Figure 3 shows the classification performance with respect to
different cities for DCASE 2019 dataset. All views provide
> 50% accuracy, demonstrating the satisfaction of view
sufficiency property. Similar conclusions were obtained for the
DCASE 2018 dataset as well.

C. Feature extraction

We have used two different pre-trained networks for feature
extraction, namely L3-Net [21] and Soundnet [22]. The former
network takes raw audio signal as input and outputs an
embedding of size 512 × 97. We compute the average across
the time axis to get a column vector of dimension 512. The
latter network also takes raw audio waveform as input, which
passes through its 8 layer architecture. Features are extracted
from intermediate C5 layer by averaging the layer’s output to
obtain a column vector of dimension 256. These features are
called ‘original features’, denoted by x in equation 4.
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City name B H L P S V Li Ly M Pr
Before mixup 1051 1015 964 1014 1013 1065 1061 976 1030 1026
After mixup 1320 1320 1320 1320 1320 1320 1320 1320 1320 1320

TABLE I: City wise training data before and after class-wise mixup for DCASE 2019. Mixup is used only to make the number
of examples same for each view, refer to section IV-A for city name expansions.

Fig. 4: Histogram of pairwise cosine distance of multi-view
and original features from the same class across two different
views.

For all the experiments, the number of examples N = 1320
and the projection dimension is K = 9, which is determined
experimentally. The dimension d of the original features x is
512 for L3-net and 256 for Soundnet. Since, the dimension
of the multi-view features p depends on the number of views
thus, it is 54 and 90 for DCASE 2018 and 2019 respectively.
D. Effect of multi-view representation

The multi-view framework effectively reduces the pairwise
distance between the examples of same class across different
views. Figure 4 shows a histogram of the pairwise cosine
distances of the original data vectors x and their multi-
view features p for the acoustic scene ‘shopping-mall’, across
‘Barcelona’ and ‘Helsinki’. Similar observations are obatined
for other scenes as well. The transformation of the original
features to multi-view features as expressed in equation 4
results in the reduction of pairwise distances between the
examples.

Figure 5 represents t-SNE plots for DCASE 2018 train and
test data obtained before and after multi-view learning. Inter
mixing of different colors in figures 5(a) and 5(c) shows high
intra-class variation in train and test data embeddings before
multi-view learning. The cluster formation of different colors
in figures 5(b) and 5(d) indicate the reduction of variation in
both train and test data after multi-view learning.

E. Classification

We use k-NN (k-nearest neighbours) classifier for the
demonstration of view sufficiency property and to compare
the performance of the system consisting of original features
(termed as OF) with that of the multi-view features (MCCA,
KMCCA, dMCCA). The value of k is chosen to be 5
experimentally for all the frameworks.

F. Results and Discussion

Figure 6 demonstrates the location invariance of multi-view
features p for the DCASE 2019 dataset. Here, the k-NN

Fig. 5: t-SNE plots a) train data before multi-view b) train data
after multi-view c) test data before multi-view d) test data after
multi-view. Different colors represent different classes.

Fig. 6: Plot demonstrating the location invariance of multi-
view features p over original features x.

classifier is trained with the data of a single city and tested with
a subset of data from the remaining cities. This is performed
for both the original features x and the multi-view features p.
It can be seen that the multi-view features generalize better
than the original features for all locations.

Figure 7 shows the performance of different systems: OF,
MCCA, KMCCA, and dMCCA for L3-Net and Soundnet
features on DCASE 2018 and 2019 datasets. All the systems
are trained using training data from all the views. It is evident
from figures 7(a) and 7(b) that L3-net features are more
discriminative than those of Soundnet, as the former network
is trained on a larger and more diverse dataset.

For L3-net features, all the multi-view systems perform
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Fig. 7: Comparison of performance of different systems and
features for DCASE 2018 and 2019 dataset.

better than the OF system indicating the effectiveness of multi-
view learning. Amongst the three multi-view systems, dMCCA
performs better than the other two owing to the advantage
of using deep learning which effectively learns the complex
representations present in the real-world data. Overall, the
combination of L3-Net features and dMCCA gives the best
performance with 71.2% classification accuracy for DCASE
2018 and 70.5% for DCASE 2019 datasets.

Figure 7(a) (yellow bars) also shows the comparison with
other methods : DCASE baseline [18], Nguyen et al. [23] and
Yang et al. [24] for DCASE 2018 dataset. Figure 7(b) (yellow
bars) provides the comparison with : DCASE baseline [18],
Salvati et al. [25] and Zhenyi et al. [26] for DCASE 2019
dataset.

It is to be noted that, in these experiments, we make no
attempt to obtain state-of-the-art results for the respective
datasets; rather the objective is to verify the reduction of
intra-class variability using multi-view learning. The use of
large-scale data augmentation, and classifier ensembles should
further improve the performance.

V. CONCLUSION

This paper explores the effectiveness of using multi-view
learning for reducing intra-class variation. By considering
recording locations as multiple views and utilising CCA-based
algorithms, considerable increase in classification accuracy
was obtained for acoustic scene classification. The assumption
here is the access to view information while training. Future
work includes the use of supervised multi-view learning

techniques, and the study of generalizability when one or more
views are not available during training. The code is available
on Github https://github.com/AkanshaTyagi-06/eusipco 2022
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