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Abstract—To increase the robustness of Acoustic Scene Clas-
sification (ASC) during foreground speech presence, we recently
proposed a noise-floor based iVector framework exploiting the
statistical estimate of the background signal spectrum. Thereby,
ASC accuracy was greatly improved when foreground speech
was predominant, at the cost of poorer performance in scenarios
with low foreground speech levels. A soft Voice Activity Detector
(softVAD) is introduced, here, to improve this trade-off. Three
possibilities are investigated: (a) a segment-wise, weighted score
fusion system, yielding a sofVAD-based weighted average of the
output scores of the (classical) iVector framework and those of
the noise-floor based iVector framework; (b) the introduction of
weighted Baum-Welch statistics in the iVector extraction stage,
with weights that emphasize the background-dominant frames
and disregard speech-dominant frames in the test sequence.
Based on the performance of these alternatives, a third approach
(approach (c)) that performs segment-level score fusion of the
frame-wise weighted statistics (approach (b)) and the noise-floor
system is proposed. Experiments conclusively demonstrate that
all proposals significantly improve the classification accuracy.
Especially the last approach outperforms all other methods in
a wide range of experimental conditions.

Index Terms—Acoustic scene classification, iVector, softVAD,
noise-floor estimation, foreground speech robustness

I. INTRODUCTION

While most acoustic scene classification (ASC) systems
perform well when only the ambient/background signal char-
acterizing the acoustic scene is present, their performance
degrades significantly when foreground speech is captured as
well — as is typical in a real-life scenario. E.g., in telecom-
munications, or audio captured by hearables, it is very likely
that the captured audio is dominated by the speech of the user.
Practical integration of ASC into the audio processing chain
of such devices, therefore, requires robustness to foreground
speech. Research on this topic is still somewhat in its infancy.

A logical method to handle this condition would be to apply
an operation inverse/complementary to speech enhancement,
such that foreground speech is removed. There exists a wide
range of speech enhancement approaches that can be adapted
for this purpose (e.g. [1]-[3]). Alternatively, as recently pro-
posed in [4], an explicit first stage is included in the ASC
framework to remove foreground speech. A disadvantage of
such methods is that they typically introduce (non-linear)
artefacts in the resulting signal, which would affect the ASC
system. Hence, our recent work [5] proposed to determine
the acoustic scene on the basis of acoustic features extracted
from the noise-floor, which is an estimation of the ambient
signal spectrum. Along with multi-condition training (MCT),
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the iVector [6] ASC system utilizing noise-floor-based fea-
tures significantly improved the classification accuracy in high
speech-to-background ratio (SBR) scenarios. The trade-off was
poorer performance in low SBR conditions. In this paper, we
present different means to further improve this trade-off.

Three alternatives are investigated. First: a segment-level
integration where the segment (utterance) level scores of
the ‘vanilla’ iVector-based ASC system (acoustic features
extracted directly from the microphone signal) and the noise-
floor-based system [5] are combined in a weighted manner to
determine the final score. The weights are obtained from the
average foreground speech presence probability over the whole
utterance. When speech presence is low, the scores of the
vanilla system should have a weight close to 1 and that of the
noise-floor based system close to 0. When foreground speech
dominates, the weights are reversed, and more emphasis is
given to the noise-floor based system. However, since speech
signals are highly sparse, ‘glimpses’ of the background signal
can be obtained during the speech pauses, allowing for a
better exploitation of the background signal features. Thus, the
second alternative incorporates frame-level foreground speech
presence information directly into the vanilla iVector-based
system at the factor analysis stage. This is done by computing
weighted Baum-Welch statistics, where the extracted features
are weighted according to their relevance for ASC. The higher
the speech presence probability, the lower the weight allocated
to the frame in the Baum-Welch statistics.

Experimental results demonstrate that this second system
significantly improves the ASC performance in the presence
of foreground speech, except at very high SBRs. To further
improve performance, we propose a weighted score fusion, as
described above, but of the modified Baum-Welch statistics
system and a noise-floor based system that primarily operates
on the disregarded speech frames. This last method thereby
makes full use of the information in the whole segment, as
compared to only focussing on the glimpses in speech pauses
or relying entirely on the noise-floor based system. Conse-
quently it yields the best performance over all considered
SBRs.

This work is presented as follows. Section II summarizes
the key aspects of the two baseline iVector-based ASC frame-
works. Section III introduces the softVAD as a means to
estimate the speech presence probability and presents the
different ways of integrating it within the ASC framework.
Sections IV and V describe the experimental setup and present
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and discuss the evaluation. Section VI concludes the paper.

II. BASELINE IVECTOR-BASED ASC FRAMEWORKS

The acoustic features used in the iVector framework are the
Mel-Frequency Cepstral Coefficients (MFCCs). For the vanilla
system, these are extracted from short, overlapping frames of
the microphone signal. Using factor analysis, the information
in the variable length recording, described by a sequence of
MEFCC feature vectors, is compressed to a fixed length repre-
sentation called the iVector. A regularized Gaussian backend
classifier with class-specific covariance models is then used to
process the estimated iVector and perform scene classification.

In the noise-floor-based iVector framework, the MFCCs are
derived from an estimate of the background signal power
spectral density. The latter may be obtained by any of
several well-known statistical methods employed in single-
microphone speech enhancement (e.g., [7], [8]), where this
quantity is often termed the ‘noise-floor’. The remainder of
the framework is identical to the iVector framework mentioned
above. Using the noise-floor based framework, significant
classification accuracy gain is seen in most conditions with
higher speech-to-background ratios (SBRs). However, when
no speech is present, or the SBR is relatively low, the vanilla
iVector framework achieves a better performance. For more
details, the reader is referred to [5]. Note that neither of these
baselines differentiate between non-speech and speech frames.
We hypothesize that incorporating such distinction will yield
a better performance trade-off over a wide range of SBRs.

III. INCORPORATING SPEECH PRESENCE PROBABILITY

Foreground speech presence probability is estimated using
soft voice activity detection (softVAD). SoftVAD has been
applied with success in fields such as speaker recognition,
speaker segmentation and language recognition [9], [10].
Specifically, [11] demonstrates that a softVAD integrated into
an iVector based speaker recognition system is better than a
regular VAD that indicates speech active frames by means
of a binary label. This idea was later incorporated in [12]
for a speaker segmentation system, yielding a significant
performance benefit. This is also the framework we adopt here.

A. SoftVAD for ASC

A softVAD assigns, to each signal frame ¢, a weight
(€ [0,1]) that may be interpreted as a posterior measure
of foreground speech dominance in that frame. In ASC,
therefore, this measure may be used to de-emphasize frames
dominated by foreground speech (and containing little to no
background information) and emphasize frames with little or
no speech. SoftVAD systems are typically implemented using
GMM/HMM frameworks or neural networks [13]. We choose
a GMM-based approach because the components of the GMM
are also an integral part of the iVector system, allowing for a
holistic incorporation of softVAD within the framework.

To implement the GMM-based softVAD, we require a
background signal GMM 60p and a speech GMM 60g. These
are trained on the same acoustic features o; and development

dataset used for training the ASC system. During the evalua-
tion phase, the log-likelihoods (LLs) of the acoustic features
o, of each signal frame ¢ are calculated using fp and fg. A
softmax function transforms the LLs to background posteriors
(i.e., dominance of background) p(6g|o;) [12]:

pperlogp(o:fs)

(D

where p is a hyperparameter that can be tuned on validation
data and pp and pg are, respectively, the background and
speech priors. We assume ps = pp = 0.5 in our work.

p(fslor) = pper1osp(10s) 4 pgerlogp(oids) ’

B. Weighted score fusion system using softVAD

For a given signal segment, denote by LL, the M- di-
mensional vector of log-likelihood values for the M available
acoustic scenes, obtained from the vanilla iVector-based ASC
framework. Similarly, denote by LL, the log-likelihoods sim-
ilarly obtained from the noise-floor-based iVector framework.
A direct application of the softVAD would be to calculate a
weighted average of these segment-level log-likelihoods. This
fused log-likelihood vector LLg may be expressed as:

LLg = oLL, + (1 — o)LLy )

where the weight « is the average background occupancy or
dominance in that segment. If N is the total number of frames
in the segment, a straightforward computation of « is:
1 Nl

a:N§M%M) 3)
The most likely acoustic scene then corresponds with the index
of the maximum value within the fused LL vector LLg. This
system is denoted as SFyap in the following.

Exploiting weighted score fusion as in (2) can be expected
to improve ASC performance over a wide range of SBRs.
However, since softVAD provides a background posterior per
frame and score fusion can only be implemented per segment,
we next explore the possibility of a frame-wise integration.

C. Modified Baum-Welch statistics system using softVAD

Frame-wise integration of the softVAD information can
be carried out directly within the factor analysis stage by
modifying the estimation of the zeroth and first-order Baum-
Welch statistics N¢ and f¢ for each component c of the back-
ground GMM. Thus, during iVector extraction, each frame
is weighted by the background posterior [11], [12] and the
weighted Baum-Welch statistics are obtained as:

N—-1
Ne=>"p(0slo)y(05.c|o:)

t=0

N1 4)
fe= p(93|0t)’7(93,c|0t)0ta

t=

o

where ’y(@ B,c{ot) is the occupation probability of component
c of the background GMM 6y and o, represents the feature
vector for frame ¢. Given these modified Baum-Welch statis-
tics, the iVector can then be extracted as in [14]. This system
is denoted as BW,q in the following.
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D. Late fusion of BW,,,q and noise-floor based system

The BW ¢ System mainly extracts information relevant for
ASC during the speech pauses, where the background signal
is ‘glimpsed’. In speech dominant frames, however, some
background information is still present in the noise floor. Thus,
we investigate a suitable integration of this information (from
the noise-floor based system) alongside the BWy,q system.

First, in order to extract relevant information in the speech
dominant frames, so as to be truly complementary to the
BWihoa system of Section III-C, the noise-floor based system
is modified. Chiefly, after extracting the acoustic features
o nr from the noise-floor and training the background GMMs
OBy, complementarily weighted Baum-Welch statistics are
computed in the factor analysis stage:

N-1
Ny = Z (1 —p(eB\Ot))V(HBNF,c‘Ot,NF)

v ®

INe = Z (1 —p(eB\Ot))V(HBNF,c‘Ot,NF)Ot,NF-

t=0

The weighting by (1 — p(93|ot)) emphasizes background
information in the noise-floor during speech-dominant frames.
Following this, iVector extraction is similar to Section III-C.

Next, the log-likelihoods of this modified noise-floor system
and that of the BWy,,q system are fused according to (2). We
term this last system SFpw,, ,-NF,,. -

E. Data selection for training the softVAD

The softVAD requires training a background GMM and a
speech GMM. One simple way of choosing the training dataset
is to use the background signals (without foreground speech)
to train the background GMM and the clean foreground
speech signals for the speech GMM. Note that silence frames
are removed when training the speech GMM. Theoretically,
models trained on such data can yield a good softVAD to
obtain the background posterior during test. However we found
it best, when training the speech GMM, to also include speech
mixed with background signals at different SBR levels. See
Section V for this analysis.

IV. EXPERIMENTAL SETUP

A. Dataset

The dataset consists of a background ASC dataset and a
foreground speech dataset. The background dataset is taken
from DCASE 2016 Task 1 dataset [15]. This includes ap-
proximately 10 hours of development data and 3 hours of
evaluation data, distributed evenly over 15 different acoustic
scenes. The development data contains 78 segments of every
acoustic scene, each of 30 seconds duration. The evaluation
data contains contains 26 segments of each acoustic scene,
each again 30 seconds long. For the foreground speech 78
speakers are randomly selected from LibriSpeech dataset
[16] for the development. For the evaluation, we choose 26
speakers from the PTDB-TUG pitch-tracking dataset [17] and
the Multilingual Speech Dataset of NTT-AT!. Note, thus,

Uhttps://www.ntt-at.com/product/speech2002/

that the foreground speech data is selected from completely
different datasets in training and evaluation. The DCASE data
is downsampled to 16 kHz mono for use with the speech data.

1) ASC datasets: To generate scenarios with foreground
speech, 30 seconds of speech from a speaker is concatenated
into one file. In the development dataset, 78 speakers are used
as foreground speakers, with a new speaker being used for
each background ASC signal segment. Note, however, that
the same 78 speakers are used for all the 15 different scenes.
The complete development dataset is obtained by merging the
original, clean development ASC data with the mixed ASC
data (at an SBR of —5dB). This development data is used to
train the noise-floor background GMM, the iVector extractors
and the Gaussian backend classifiers.

The same method is applied to generate the foreground-
mixed scenes for evaluation. Here, 26 different speakers are
used. There is no overlap between the speaker set in develop-
ment dataset and evaluation dataset. The speech is added on
top of the background signal at the following SBRs: {—5dB,
0dB, 5dB, 10dB, 15dB, 20dB}.

2) softVAD datasets: As mentioned in Section III-E, ASC
signals without foreground speech are used to train the back-
ground GMM. The training dataset for the speech GMM
consists of pure speech signals as well as speech mixed with
the background with an SBR of 10 dB. However, in both cases,
the acoustic features are only extracted from frames where
the speech has high energy. This is because speech is highly
sparse and conversational speech has several pauses between
words and sentences. Such frame selection, thus, avoids the
leakage of frames containing silence (when using pure speech)
or background-only (when using the mixed signals) into the
speech GMM training. We perform a limited ablation study of
this soft VAD training dataset configuration in Section V-B.

B. System parameters

The iVector extraction system is identical to that in [5],
with all hyper-parameters being determined by four fold cross-
validation on the development dataset. Each GMM consists of
256 components and the rank of the iVector extractor T is 150.
In the soft VAD module, frames with an energy level above the
median are considered as speech frames during training of the
speech GMM. The energy level is always calculated on the
clean speech signal and not the mixed one. The factor p in (1),
used to calibrate the posteriors, is 2 (empirically chosen).

V. RESULTS AND DISCUSSION

A. Performance of the proposed speech-robust ASC systems

The benefit of the proposed improvements are evaluated by
computing the classification accuracy at different SBRs. Five
systems are compared: (a) the vanilla iVector framework, (b)
the noise-floor based iVector framework, (¢c) SFyap, (d) BW0q
and (e) SFpw,,,-NF,..- The first two systems are existing base-
lines against which we benchmark the improvements obtained
by the proposed systems (c), (d) and (e).
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Figure 1 depicts the classification accuracy of each system
for different SBRs. The accuracy of the baseline vanilla frame-
work (red) strongly deteriorates with increasing SBR. At an
SBR of 20 dB, where the foreground speech is very prominent,
the accuracy drops to 43.2% (down from 80.3% in the absence
of foreground speech). This degradation is significantly limited
(flattened) when using the noise-floor based iVector framework
(dark blue). However, the performance in the absence of
foreground speech and in low SBR conditions is worse, since
the statistical estimate of the noise-floor spectrum unavoidably
removes information useful for ASC.
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Fig. 1. Classification accuracy of the five systems for different SBRs.

The last three curves present the performance of the systems
proposed in this paper. It may be seen that, for most conditions,
SFvap (green) improves with respect to the two baselines.
However, at high SBRs, the accuracy drops to 61.3%, which
is worse than the noise-floor based iVector framework. We
hypothesise this is because, in such conditions, the vanilla
iVector system scores are heavily impacted by foreground
speech. Further, since we use a soft VAD, the weights are rarely
binary. Thus, a weighted combination of these scores with the
noise-floor based system serves to degrade the final result.

We expected SFyap to be better than BW o4 (purple) at
high SBRs and vice versa at low SBRs. Surprisingly, however,
the results indicate that the second alternative consistently
outperforms the first alternative and shows relatively consistent
performance over all testing conditions. This is an interesting
result as it indicates that, with conversational foreground
speech, sufficient background signal information can be ex-
tracted during speech pauses to enable a good ASC.

To further analyze this implication, Table I presents the
average background occupancy in the evaluation dataset, sep-
arately for each SBR condition. This indicates the average
percentage of frames judged to be background dominant for
that SBR condition. For this evaluation, a frame is consid-
ered to be background dominant if its background posterior

TABLE I
AVERAGE BACKGROUND OCCUPANCY (%) IN THE EVALUATION DATASET
OBTAINED BY SOFTVAD FOR DIFFERENT SBRS.

SBR (evaluation data) [ Average background occupancy(%)

No speech 80.34
—5dB 56.10
0dB 48.29
5dB 43.16
10dB 40.56
15dB 39.11
20dB 37.96
Pure speech* [ 32.68

* Clean speech signals (Section IV-A), without background mixing.

p(6plo:) > 0.3. This decision threshold was chosen since it
corresponds to the minimum in between the speech mode and
background mode in the histogram plot of the frame-based
background posteriors. We see that background occupancy
decreases with increasing SBR and, in the condition of pure
speech, background occupancy is 32.68%. This corresponds
to the length of the typical silences present in conversational
speech (indeed, speech enhancement literature typically as-
sumes a speech absence probability of 0.2, see e.g., [18]).

The occupancy metric gives an indication of the amount of
data effectively utilized by BW,,q for ASC, thereby yielding
a better understanding of how the accuracy is affected as a
function of the amount of usable data. At an SBR of 20dB,
only 38% of the frames are effectively used in computing the
Baum-Welch statistics. This implies that from the 30s length
segments considered in our evaluation, only 12s of data is
effectively used for ASC. To validate this conclusion, we con-
sider an experiment where we take the vanilla iVector system
and evaluate it on a 30-second and 10-second segments of the
evaluation dataset, in the absence of speech. The classification
accuracy is, respectively, 80.3% and 74.6% where the latter
score is close to the 69.5% reported in Fig. 1.

Though BW o extracts information relevant for ASC
mainly from speech-absent frames, it still shows competitive
performance. This can be improved if we can further leverage
information gleaned during speech-active frames. This leads
to the SFpw, . NF.. System where, by computing comple-
mentarily weighted Baum-Welch statistics in the noise-floor
based iVector framework, we exploit information in frames
which are not actively used in BW;,,q and combine this
information using (weighted) score fusion. This system (cyan
in Fig. 1) consistently outperforms all other systems in the
tested conditions. This further indicates that complementary
information is extracted from the noise-floor and from the
BWpo4 system.

B. Training dataset configuration of the speech GMM
Lastly, we evaluate the benefit of different datasets used
for training the speech GMM in the softVAD. Two sets are
considered: a first set where the speech GMM is trained only
on pure speech signals and our default second set where, in
addition to pure speech signals, speech mixed with background
at an SBR of 10dB is also used. All other settings are
identical to those described in Section V-A. Figure 2 shows
the classification accuracy of BWy,,q for the speech GMM
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trained on these datasets. We observe that by augmenting the
data used for training the speech GMM, the ASC performance
is more steady over all testing SBRs. We believe that using
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Fig. 2. Impact of different training datasets for the speech GMM in softVAD

multi-condition training for the speech GMM allows for a
more reliable discrimination between background dominant
and speech-dominant frames. Especially, we expect a better
detection of weaker/lower energy speech frames in the higher
SBR conditions. Such frames, if not detected as speech dom-
inant, may negatively affect the ASC performance.

VI. CONCLUSIONS

Our previous work [5], based on noise-floor features, im-
proved the ASC performance for high SBR conditions, but
at the cost of poorer performance in low SBRs. To improve
this trade-off, we propose to incorporate speech presence
information within the ASC framework. We have investigated
three possibilities for this: a weighted score fusion system
(SFyap), a modified Baum-Welch statistics system (BWp,0q4)
and, lastly, late fusion of BWy,,¢ with a complementarily
weighted, modified noise-floor based system, which we term
SFBW,,..-NF,..- Speech presence probability is estimated by a
GMM-based softVAD, which can be holistically incorporated
in our iVector framework.

Results demonstrate that BW,,,q already outperforms our
previous system [5] as well as SFyap. This indicates that, in
conversational foreground speech, sufficient background signal
information can be extracted during speech pauses to enable a
good scene classification. Thus, training a system to explicitly
perform ASC in speech pauses may already provide sufficient
foreground-speech robustness. However, the noise-floor based
system stills yields information relevant to ASC in the speech-
dominant frames and integrating this information can further
improve the ASC system performance. This is evident from the
superior performance of SFpw,_ ,NF,,, compared to all other
approaches, over the entire range of tested SBRs.

Lastly, we note that the comparative analysis is limited to
the baselines in our previous work. The only other paper
we find on the topic is [4], which uses two separate DNNs
in cascade, one for speech removal and the other for ASC.

However it would be more efficient to train a single end-to-
end DNN for ASC, implicitly robust to foreground speech.
Our experiments with the modular and highly controllable
iVector framework provide extra insights into this aspect.
Based on our results, attentive statistics pooling [19] could
help in steering DNN-based ASCs to focus on background
‘glimpses’. Whether such frame-level attention weights can
be solely based on self-attention or if these weights should be
steered by a soft VAD module is subject of future work.
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