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Abstract—Multi-label Sound Event Classification (SEC) is a
challenging task which requires to handle multiple co-occurring
sound event classes. Recent works proposed an ontology-aware
framework for SEC in which a Graph-Neural Network (GNN)
approach is trained to exploit labels co-occurrence information
and improve the performance of a standard audio-feature based
classifier via late-fusion. This GNN is fed a graph-based repre-
sentation of the training set labels. In this paper we adopt such
framework and perform an in-depth study on how the labels
embeddings used to construct the graph representation can affect
the performance. We perform our experiment on the FSD50K
dataset and compare different embeddings strategies: two from
previous works and two which haven’t been considered yet for
SEC applications. Our results show that node2vec embeddings
lead to substantial performance improvements with respect to
other embeddings strategies used in previously ontology-aware
SEC works. Our best node2vec model leads to an absolute
improvement of 3.39% in mean average precision with respect to
the best competing embedding strategy, with a lower number of
trainable parameters.

Index Terms—Sound Event Classification, Audio tagging,
Graph Representation Learning, Graph Neural Networks, On-
tology structure, node2vec.

I. INTRODUCTION

Multi-label Sound Event Classification, also referred as
multi-label Audio Tagging, aims to predict the presence of
certain sound events in an audio recording. As multiple,
different, sound events can occur in the same recording,
in multi-label SEC class labels are not considered mutually
exclusive, and algorithms must be able to handle multiple,
co-occurring events. Typical SEC systems are based on deep
neural networks (DNN) like, for instance, convolutional neural
network (CNN) classifiers, working on either spectrogram-
based features [1], [2] or directly from the raw waveform [3].
More recently, many methods use recurrent neural networks
(RNN) [4]–[6] or convolutional recurrent neural networks
(CRNN) [7]–[9], which can also capture temporal information
of sound events, or even graph neural networks (GNN) for
audio feature representation [10].

Most of these methods, do not take advantage of the
intrinsic relationships between different co-occurring sound
events which are detected within the same audio clip. In fact,
some sound events are more likely to occur together as they
can belong to the same category e.g. musical instruments or
to the same acoustic scenario e.g. office environment. Some
approaches have been proposed to embed information retrieved
from labels relationships for classification tasks, primarily in

computer vision [11]–[14], natural language processing [15],
[16] and on audio domain [17], [18].

Both [17] and [18] propose an ontology-aware SEC frame-
work in which a graph-based DNN approach is used to
exploit prior knowledge about sound events ontology and co-
occurrences. This graph DNN is fed a graph representation of
the training set labels relationships, e.g. in [18] graph edges are
defined by the labels correlation matrix and nodes embeddings
by one-hot encoded vectors. The output of this graph DNN is
used in both works [17], [18] to improve SEC performance
of a more “classic”, audio-features based, classifier via late
fusion.

Hereafter, building upon these previous work, we study
how the node embedding strategy employed in the graph-
based DNN can affect SEC performance. In [18] only one-hot
encoded vectors were considered for use as labels node em-
beddings. While in [17] pre-trained GloVe word embeddings
are used. Here we study the use of two additional node em-
beddings strategies which haven’t been previously explored for
SEC tasks: node2vec [19] learned embeddings and pre-trained
fastText [20] word embeddings. We perform experiments on
the recently proposed FSD50K dataset [21] and show that
node2vec embeddings bring substantial performance improve-
ments over both one-hot and pre-trained fastText and GloVe
word embeddings. Importantly, these improvements come at a
modest increase in the number of trainable parameters when
compared to the original audio-feature classifier used alone
without the ontology graph DNN branch.

This paper is organized as follows: in Section II Graph
Neural Networks, Recurrent-GNNs and Node Embedding are
briefly introduced. Following, in Section III, we explain in
detail our framework and approach. We present the exper-
imental setup, the dataset used and discuss the results in
section IV and finally in V we draw conclusions and outline
possible future work. We make our code publicly available at:
github.com/aircarlo/MultilabelGraphSEC.

II. GRAPH NEURAL NETWORKS AND NODE EMBEDDINGS

The notion of graph neural networks was initially outlined in
Gori et al. [22] and further elaborated in Scarselli et al. [23].
These early models implicitly define a Spatial Convolution
structure [24]–[26], which was subsequently formalized with
the concept of Message Passing (MP) mechanism, in which
we try to acquire information by aggregating informative
messages from neighboring nodes. Furthermore, they fall into
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the category of recurrent graph neural networks (RecGNNs)
[27], in which a target node’s representation is learned by prop-
agating neighbor information in an iterative manner, sharing
memory parameters, both between nodes dimension and time
domain, until a stable fixed point is reached. On this work
we focus on a later development proposed by Li et al., Gated
Graph Neural Network (GGNN) [28] which employs a gated
recurrent unit (GRU) [29] as a recurrent function, reducing the
recurrence to a fixed number of steps.

Given an initial node embedding x
(0)
i , from which to define

a hidden representation h
(0)
i as:

h
(0)
i = xi ∥0, (1)

where ∥ denotes the concatenation operation. A node hidden
state hi at timestep t is obtained aggregating its previous
hidden state and its neighboring hidden states through the
following equations:

m
(t+1)
i =

∑
j∈N (i)

ej,i ·Θ · h(t)
j , (2)

h
(t+1)
i = GRU(m

(t+1)
i ,h

(t)
i ), (3)

where ej,i denotes the edge weight from source node j to
target node i. GNN unroll the recurrence for a fixed number
of steps T and use backpropagation through time in order to
compute gradients.

A. Node Embedding

Node embedding plays a significant role in learning useful
information from graph structured data. Broadly, node em-
bedding refers to the task of mapping each node of a graph
in a lower dimensional vector space, preserving “similarity”
between native and embedded domains. Embeddings should
capture the graph topology along with relationships between
nodes and further relevant inherent information.

Many algorithms to generate node embeddings have been
proposed [30], differing in particular in how node similarity is
defined, which is a crucial aspect for effective graph-structured
data modeling. On this work we focus on node2vec [19],
a random walk based method which uses a random walk
approach to generate network neighborhoods for nodes by
stochastic sampling, and which defines similarity between
nodes u and v as the probability that both u and v co-occur
in a random walk over a network.

In node2vec, an encoder function ENC(·) maps the tran-
sition between graph domain and the embedding space, it is a
lookup learnable matrix Z:

ENC(vi) = zi = Zvi, (4)

where vi ∈ I|V| is an indicator vector.
Similarity of a pair of nodes vi and vj is defined as the

probability of visiting node vj on a random walk of fixed
length, starting from node vi:

sG(vi, vj) = Pr(vj |vi). (5)

On the other hand, similarity in the embedding space is a
softmax of the dot product between node’s embedding vectors:

sE(zi, zj) =
exp

(
z⊤
i zj

)∑
k∈Ni

exp
(
z⊤
i zk

) , (6)

where Ni is the neighbourhood set of node vi, sampled during
the random walk.

The objective of embedding is to maximize the likelihood
of random walk co-occurrences, defined by the following loss
function:

L =
∑

vi,vj∈V

log (sE(zi, zj)) . (7)

The strategy implemented in node2vec (illustrated in Figure
1) to define node neighbours is to use biased random walks that
can trade off between local and global views of the network.
Specifically, given a graph and starting from a specific node,
two parameters p and q define the next hop probability during
the walk, allowing to choose between a global macro-view
of neighborhood (Depth First Search approach) or by first
exploring the nearest nodes (Breadth First Search approach).

Fig. 1. node2vec sampling strategies: BFS-like walks (red) vs DFS-like walks
(blue), starting from node vi.

III. ONTOLOGY-AWARE SOUND EVENT CLASSIFICATION

As in [17], [18], also here we adopt an ontology-aware
framework composed of two main modules: an audio em-
bedding module and the label (graph) co-occurrence learning
module. The proposed approach is illustrated in Figure 2.

The audio embedding module is used to extract an high-
level, condensed representation from feature vectors extracted
from the audio waveform, such as log-Mel filterbank energies
(LFBE). On the other hand, the label co-occurrence learning
module is based on a graph neural network. This latter learns
node mappings via multi-layer GGNN and is fed with a fixed
pre-defined graph, where each node has an initial embedding
representation. We describe both modules in detail thereafter.

A. Audio embedding module

In this work, we consider for the audio embedding branch
the Convolutional-Recurrent Neural Network (CRNN) archi-
tecture proposed in [31] and employed as a baseline method
in [21]. Other previously proposed classifiers, such as [1]–
[9], can be employed in principle. This model is fed in input
a feature vector V ∈ RF×T obtained from a clip segment,
where F and T are the dimension of each feature vector (e.g.
number of Mel bands) and the number of time frames of the
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Fig. 2. Audio embedding module (left branch) and graph co-occurrence
learning module (right branch) of the proposed CRNN-GGNN architecture.

input feature, respectively. These features are then processed
by three convolutional blocks. Each block convolves the input
feature map with two-dimensional filters; then, ReLU, max-
pooling and batch-normalization are applied in this order.
Following, a single-layer Bidirectional Gated Recurrent Unit
(BiGRU) is applied on the output of the last convolutional
layer. The forward and backward output vectors are then
concatenated and placed as input of a single-layer dense
network which outputs a final embedding vector f ∈ RD

with dimension D which matches the output size of the label
co-occurrence learning module.

B. Label co-occurrence learning module

The graph learning module depends on the initial labels
node embeddings and the label correlation matrix M . These
two components are in fact used to build up a graph repre-
sentation where each node i is a vector of embedding size
xi ∈ RD and the graph edges are defined by the labels
correlation matrix.

Previous works [12], [14], [17], [32], propose several ap-
proaches to build this correlation matrix. For example, [17]
builds the correlation matrix as a binary matrix, where entries
Mi,j which represents edges between i-th and j-th label are
either one or zero wether or not they share a common Audioset
[33] parent class label. By contrast, here we adopt a strategy
similar to [12], [14], [32] and focus on the label co-occurrence
matrix of training data to build the correlation matrix, which
is used to represent the structured graph of label relationships.
Let N be the total number of classes, the generation process
is as follows: using the training data ground-truth labels we
compute the label co-occurrence matrix M ∈ RN×N whose
elements Mi,j counts the times of appearance of pairwise
events (ei, ej); then the total occurrence of each label Li in the

training set is counted and the conditional probability matrix
is calculated by:

M ′
i,j = Mi,j/Li.

Contrary to [12], [14], [32], we further remove diagonal
elements from the resulting matrix, which correspond to self-
loop connections. We found in our experiments that these
degraded performance.

The labels co-occurrence graph is then constructed from this
correlation matrix M , which defines the graph edges and the
node embeddings. This graph is then fed to a GNN which
transforms such initial graph representation and outputs final
learned node embeddings H ∈ RN×D.

Multilabel class logits c are obtained by multiplying these
learned node embeddings H with the audio embedding mod-
ule feature vector f :

c = Hf⊤ (8)

IV. EXPERIMENTAL SETUP AND RESULTS

In this study, we consider four different strategies for deriv-
ing the node embeddings of the label co-occurrence module. In
detail, we compare one-hot vectors as used in [18], pre-trained
GloVe word embeddings as used in [12], [14], [32], fastText
word embeddings, as used in [12] and node2vec embeddings.
These latter have not yet been explored for SEC tasks. We will
compare the performance of various configurations for such
node embeddings within the framework described in Sec. III.

A. Dataset

We perform our SEC experiments using FSD50K [21], a
recently introduced dataset of sound event clips with over 100
hours of manually labeled audio and 200 classes, drawn from
the larger AudioSet ontology [33]. More in detail, FSD50K
contains 37134 audio clips for training, 4170 audio clips for
validation, and 10231 audio clips for evaluation. The clips
have variable length from 0.3s to 30s. We used the provided
training, validation and test splits to respectively train, tune
and test the models employed in our experiments.

B. Feature Extraction

Following [21], we resample FSD50K from the original 44.1
kHz samplerate to 22.050 kHz and extract 96-band, LFBEs
to use as input features for the CRNN branch. To deal with
variable-length clips, we feed to the CRNN LFBEs extracted
from audio chunks of 1-second length with 50% overlap.
LFBEs are computed with a Short-Time Fourier transform
window size of 30 ms with 10 ms stride. With these settings,
input CRNN features have shape (f, t) = 96× 101. The label
associated with each chunk is inherited from the source clip
label as the dataset is weakly labeled.
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TABLE I
CLASSIFICATION PERFORMANCE FOR THE CONSIDERED ARCHITECTURE WITH DIFFERENT NODE EMBEDDINGS. FOR EACH MODEL, WE REPORT THE

NUMBER OF TRAINABLE PARAMETERS. THE METRICS USED ARE DESCRIBED IN DETAIL IN SECTION IV-D

Model node embedding trainable param. mAP mAUC d′ lωlrap

CRNN baseline - 0.923M 0.3676 0.9307 2.0950 0.5113

CRNN-GGNN 200-dim one-hot 1.285M 0.3532 0.9264 2.0501 0.5252
CRNN-GGNN 300-dim GloVe 1.748M 0.3644 0.9266 2.0517 0.5114
CRNN-GGNN 300-dim fastText 1.748M 0.3696 0.9283 2.0599 0.5248

CRNN-GGNN 64-dim node2vec 0.943M 0.3752 0.9336 2.1254 0.5434
CRNN-GGNN 128-dim node2vec 1.062M 0.4035 0.9340 2.1310 0.5513
CRNN-GGNN 200-dim node2vec 1.285M 0.3551 0.9255 2.0990 0.5373
CRNN-GGNN 300-dim node2vec 1.748M 0.3725 0.9310 2.1668 0.5516

C. Networks structure and Node embedding

In the CRNN model we use 128 filters, (5, 5) kernel size
and unitary stride for all convolutional layers. The pooling
sizes for the max-pooling layers are (f, t) = (5, 2), (4, 2) and
(3, 2). The bidirectional GRU block has an hidden layer with
size 64. Regarding the graph co-occurrence branch, we employ
a GGNN model composed of three hidden layers with node
embeddings of the same size as input. We investigated several
parameters involved in the node2vec algorithm, and found
the best configuration to be as follows: walk length = 20,
num walks = 20, return parameter p = 0.1 and in-out
parameter q = 1.

D. Evaluation metrics

We use four evaluation metric scores, which are widely
used in SEC [21]: mean Average Precision (mAP), mean Area
Under the Curve (mAUC), and sensitivity index d-prime (d′);
Mean Average Precision is an approximation of the area under
the Precision-Recall curve, which is more informative of per-
formance when dealing with imbalanced datasets. Similarly,
mean Area Under the Curve (mAUC) metric is defined as the
area under the ROC curve, averaged over all sound classes;
d-prime index is closely connected to AUC; it is defined as
the difference between z-scores of True Positive Rate (TPR)
and False Positive Rate (FPR):

d′ = z(TPR)− z(FPR). (9)

Finally, the plain label-ranking average precision (lrap)
measures the average precision of retrieving a ranked list of
relevant labels for each test clip: the system ranks all the
available labels, then the precisions of the ranked lists down
to each true label are averaged. Here we employ the “label-
weighted” variant which calculates the precision for each label
in the test set and gives them all equal contribution to the final
metric:

lωlrap =
1∑

s |C(s)|
∑
s

∑
c∈C(s)

lrap(c, s), (10)

where |C(s)| is the number of true classes for sample s.

E. Model Training

Models were trained up to 60 epochs with a random weight
initialization for networks on both modules; learning rate was
initially set to the value of 5 · 10−4, and then halved if
validation mAP is not improved within 5 epochs. Adam [34]
was used as optimization algorithm, with L2 weight decay
of 5 · 10−4. Each model was trained with a binary cross-
entropy loss with separate logits for each class, as we perform
multi-label classification. We used a batch size of 256 to
maximize the GPU utilization. Once the training is over, the
model checkpoint with best validation mAP is selected and
evaluated on the test set. For all graph-based models we tune
the size of the node embedding dimension with respect to
mAP obtained on the validation set. To improve generalization,
during training, we employed mixup augmentation [35] with
parameter λ drawn from a beta distribution Beta(α, α) with
α = 0.2.

F. Results

We report our results in Table I. In detail we compare
the CRNN classifier used alone (CRNN baseline) with the
approach described in Section III, where we use a GGNN
to learn co-occurrences prior knowledge as an additional
information for SEC. In detail, for this latter approach, we
compare different node embedding strategies while keeping
the rest of the framework the same. Firstly we can see that
using one-hot encoding, as in [18], improves only lωlrap score
with respect to the baseline and instead leads to a degradation
of the other metrics. Secondly, we can observe that using
GloVe pre-trained word embeddings for the nodes, as used
in [17], leads to slighly lower performance for most metrics
in our task. This could be due to the fact that FSD50K dataset
is significantly more challenging than the dataset used in [17].
Instead, we found the proposed node2vec based approach to
lead in general superior results both with respect to the CRNN
baseline model used alone and with the other embeddings.
The most noticeable increase in mAP and mAUC values are
observed for the 128 node2vec embedding dimension (0.4035
and 0.9340 respectively) but a slight performance increase is
observed already with a modest 64 embedding size model.
Increasing further the embedding size leads to a degradation
of mAP and mAUC scores and, in general, mixed results: the
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200-dim model obtains worse results than the baseline model
while the 300-dim model obtains the highest d′ and lωlrap
figures. These are however only marginally better than ones
obtained with 128 embedding size. In general we can conclude
that using node2vec with 128 embedding size leads to the
best trade-off between the number of trainable parameters and
performance.

V. CONCLUSIONS

In this work we compared different node embedding strate-
gies for ontology-aware SEC. Building from previous works,
we adopt a SEC framework which is able to exploit infor-
mation of sound events classes co-occurrence via a learned
GNN-based module. This module is fed a graph whose nodes
are labels embeddings and whose edges are defined by the
various labels co-occurrences obtained from the training set.
The output of this module is then combined with the output of
a conventional CRNN architecture which is fed audio-related
features. Using this framework, we compared different node
embeddings strategies using the FSD50K dataset to perform
our experiments. We show that node2vec node embeddings
can outperform other embeddings strategies used in previous
works on ontology-aware SEC. Our best node2vec-based
method improves the SEC absolute performance up to 3.39%
in terms of clip-level mAP score, 0.0711 points on sensitivity
index (d′) and 0.0265 points on lωlrap score, compared with
the best competing embedding approach (fastText). Future
works may include exploring different audio modules, as well
as extending the technique to SED, by managing the event
localization at frame-level and not at the audio clip-level.
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