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ABSTRACT

End-to-End automatic speech recognition (ASR) models aim
to learn generalised representations of speech. Popular ap-
proaches for End-to-End solutions have involved utilising
extremely large amounts of data and large models to im-
prove recognition performance. However, it is not clear if
these models are generalising the training data or memorising
the data. This paper combines the power of a mixture of
experts (MoE) models, which is referred to as multi-band,
multi-channel, with a popular model for ASR, the CNN-
transformer, to capture longer-term dependencies without
increasing the computational complexity of training. The
goal is to investigate how the transformer models adapt to
these different input representations of the same data. No
external language models were used to remove the impact
of external language models during inference. Although the
proposed multi-band transformer shows performance gain,
the main finding of this paper is to show the adaptive memo-
risation nature of transformers and the neural representations
of transformer embedding. Using the statistical correlation
index SVCCA, comparative discussion of the neural repre-
sentations of the proposed model and transformer approach
is provided, with key insights into the distinct learned struc-
tures.

Index Terms— end-to-end, automatic speech recogni-
tion, transformer, interpretability, convolutional neural net-
works

1. INTRODUCTION

In recent years, the main approaches for automatic speech
recognition (ASR) solutions have been hand-crafted deep
neural networks (DNNs) combined with Hidden Markov
models (HMMs) and End-to-End models, which train all
modules jointly in a globally optimised method. The per-
formance of the End-to-End approaches are now level to
DNN-HMM models when a sufficient amount of training
data is utilised [1]. However, the performance of End-to-End
models is still comparatively worse on lower resource tasks
or with particularly challenging data.

This work was partly supported by Voicebase Inc. at the Voicebase Re-
search Center

Particular focus of current developments with attention-
based models have involved data augmentation techniques
[2], [3], [4] and vastly increasing model depths [5], [6] in an
attempt to provide richer neural representations. However, it
is not always clear whether these models are generalising or
memorising the data and the performance improvements are
not attributed to the structures within the actual model archi-
tecture. A current state-of-the-art approach [7] utilises the
combination of convolutional neural networks (CNNs) and a
transformer to provide further improved ASR performance. It
is hypothesised that this is due to the ability of CNNs to cap-
ture richer local feature representations while the transformer
is better able to capture global context. The Linformer model
[8] attempted to approximate the information in the attention
matrix of the original transformer model. This was done by
linearly scaling the attention by projecting the embedding
matrix into lower dimension space then computing the inner
product. A further attempt from [9] aimed to remove the inde-
pendence assumptions during modelling to capture long-term
context dependencies for End-to-End models. This approach
used a “knowledge distillation” technique, where a hierar-
chical transformer model handles utterance level contextual
information and discourse level information independently,
while sharing the learned dependencies.

This paper explores the implementation of scalable multi-
band CNN models to capture longer-term dependencies, in-
spired by a mixture of experts (MoE), which has been shown
to be effective in NLP [10] [11] and vision domains [12].
This approach aims to retain the model representation capac-
ity while keeping the inference cost constant by applying a
subset of parameters to each sample.

Furthermore, building upon previous work from [13], the
neural representations of the multi-band model are compared
to observe the interaction between the developed structures
and the data. SVCCA has been used previously [14] to com-
pare DNN representations. This work aims to provide fur-
ther insights on the similarity of the learned structures across
training and provide a discussion on the distinct representa-
tions that occur within convolutional-transformer models and
the adaptive memorisation capability of the transformers.
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2. MODEL ARCHITECTURE

Recently CNNs have been shown to improve ASR model per-
formance when combined with transformer models compared
to recurrent based models as they are able to capture local fea-
ture information progressively, while the transformer is better
able to handle the longer range global context. Variations of
this approach, such as [7], combine the convolutions with the
self-attention mechanism of the transformer to achieve state-
of-the-art results on ASR tasks.

2.1. Multi-Band and Multi-Channel Convolutions

As convolutional networks process the entire spectogram of
the audio signal with the same time-frequency resolutions,
number of filters, and dimensionality reduction, previous
work [15] has shown that higher resolution features can be
extracted if the lower frequency bands are processed with
high frequency resolution filters and high frequency bands
with high time resolution filters. This is due to there being
more “voice information” in the lower frequency bands than
the higher bands. Furthermore, [16] found that deeper trans-
former layers dilute audio features, and that the distinction is
more profound with spontaneous conversational speech.

The multi-band features f are defined as having N sub-
bands, with filterbanks over C channels. The ith filterbank of
the jth band of the frame of speech can be described by:

f
(j)
i = WT

C,ix
(j)
C (1)

where WC,i is the discrete cosine transform function:
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iπ

C
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and where k is the channel energy amplitude.
By modifying the fully-connected convolutional layers

with separate filters, features can be extracted at multiple lev-
els of the frequency spectrum. The output layers can then be
concatenated together. The proposed architecture is described
by Figure 1.

Along a similar methodology, a multi-channel (mchan)
approach takes the entire input into parallel convolutional
blocks, in an attempt to learn different representations of the
same acoustic signal. The representations are then aggre-
gated using mixture of experts in the same method as the
multi-band approach. Instead of taking the frequency bands
as different streams, as shown by Figure 1, the whole input is
taken in multiple streams.

2.2. Encoder-Decoder Transformer

Transformer models are currently the predominant choice for
a multitude of domains, such as image recognition and speech
recognition. The model published in [17] has especially been
utilised for End-to-End speech recognition due to its ability to

create a more accessible parallel training method which has
allowed End-to-End solutions to make use of larger amounts
of data. The main component of the transformer model is
the attention module, which measures the similarity of pair-
wise positions for a window of the input sequence. The trans-
former model has an encoder-decoder structure with stacked
self-attention and point-wise, fully connected layers. Each
of the blocks has a multi-head self-attention layer and feed-
forward layer.

The positional encoder takes the filtered output of the con-
volutional layers to determine the context based on the po-
sition of features in the embedding space. The context em-
bedding is then passed to the encoder block, where it is fed
through a multi-head attention layer and feed forward layer.
The self-attention mechanism aims to attend across a window
of the input with reference to the rest of the input. Each at-
tention vector is then finally passed through a feed-forward
layer to continue the sequence of encoder blocks. The out-
put of the encoder is then passed to a decoder block where
a self-attention layer produces another attention vector over
these embedding vectors. These embeddings are then passed
to another attention block to determine the relationship be-
tween the input and output sequences. Finally, the embedding
is then passed through a final feed-forward unit to expand the
dimensions into the target output size and normalised, typi-
cally with a softmax function.

3. NEURAL INSIGHTS WITH SVCCA INDEX FOR
END-TO-END ASR

The task of End-to-End ASR is to identify the acoustic se-
quence X = {x1, ..., xT } for time T as the output label se-
quence Y = {y1, ..., yN} of length N to map the posterior
p(Y |X). Using a statistical correlation method such as singu-
lar value decomposition with canonical correlation analysis
(SVCCA) [14], two sets of observations can have their cor-
relation relationship measured. For the dataset X and neu-
ron i in layer l, the activation output can be defined as zli =
(zli(x1), ..., z

l
i(xT )). In this case, SVCCA is used to find the

two bases w and s, such that when the original matrices are
projected onto them, the correlation is maximised:

wT
∑

XY s√
wT

∑
XX w

√
sT

∑
Y Y s

(3)

where
∑

XX ,
∑

XY ,
∑

Y Y are the covariance and cross-
covariance respectively. The projections of the layers l1 and
l2 are then pruned to the top 99% representative dimensions.
The correlation is then calculated by maximising the corre-
lation of the projections of the linear transformations of the
layers l′1, l′2:

ρ =
⟨wT l′1, s

T l′2⟩
||wT l′1|| ||sT l′2||

(4)
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Fig. 1: Structure of multi-band CNN architecture: frequency filters applied in parallel through CNN layers

Put simply, the correlations between the neural representa-
tions will be higher when they have more similar information
encoded within them.

To analyse the neural representations of the CNN layers
and transformer layers, the activation embeddings of each
neuron, at each epoch were extracted using a separately de-
veloped pipeline. To ensure consistency, this was done by
passing a controlled input of 100 speech frames through each
trained model, and extracting the activation output at each
neuron. To aggregate the correlation coefficiency across lay-
ers, the spatial dimensions of the activation output vectors
were flattened, which provided spatial representation of each
neuron.

4. EXPERIMENTS

4.1. Data

The models were trained with the Switchboard dataset [18]
with 300 hours of transcribed speech and evaluated on the
Hub5’00 and RT03 test sets. 80-dimension filterbanks were
extracted from 25ms windows with a stride of 10ms.

4.2. Multi-band CNN-Transformer

All models were compiled with the ESPRESSO frame-
work [19]. The baseline model has a multi-layer stacked
2-dimensional CNN with pyramidal structure from 1 to 128
dimensions, with kernel size 3 x 3 and stride 1 and batch
normalisation between each CNN layer [20]. The final con-
volutional layer is then projected to a transformer encoder-
decoder model, described in [17]. The transformer model has
stacked encoder layers with embedding dimensions of 512 x
2048 and 6 decoder layers with positional embeddings.

As can be observed in Table 1, the multi-band and multi-
channel CNN models perform comparatively well to the base-
line model on the Hub5’00 test sets despite not being fully
optimised parameter-wise. The multi-band model achieves a
lower word error rate (WER) on the Switchboard test set but
slightly worse on all other test sets, while the multi-channel
model performs slightly worse on both test sets. A multi-band

Table 1: CNN-transformer architectures performance on
Hub5’00 Switchboard and Callhome test sets

Model Swbd Clhm

CNN + transformer 10.7 20.2
Mchan CNN + transformer 10.4 20.4
Mband CNN + transformer 10.5 20.5

Mband CNN + dropout + transformer 10.6 20.2

Table 2: CNN-transformer architectures performance on
RT03 Switchboard and Fisher test sets

Model RT03 S RT03 F

CNN + transformer 21.2 13.3
Mchan CNN + transformer 23.5 15.2
Mband CNN + transformer 23.3 14.9

Mband CNN + dropout + transformer 23.5 15.5

model with dropout regularisation of 0.1 for each band was
also included, in an attempt to improve the generalisation of
the network. While this proved to improve the performance
on the Callhome test set, the Switchboard set showed no im-
provement.

Furthermore, as can be observed in Table 2, the perfor-
mance of the multi-band and multi-channel approaches are
both also worse on the RT03 test sets.

Figure 2 displays the WER over the validation set across
epochs. It can be observed that, initially there is a large spike
in WER on all models, although this is significantly higher on
the baseline CNN-transformer model. The multi-band with
dropout and multi-channel models had the smallest spikes in
WER during training, which can be partly attributed to the
regularisation effect of the dropout parameter. Despite the
multi-band models displaying significantly more stability of
error rates during training over the initial epochs, all models
converged to roughly the same error rate by epoch 12.
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Fig. 2: Validation set word error rate across models during
training on Switchboard data

(a) CNN-transformer

(b) Multi-band CNN transformer

(c) Multi-channel CNN Transformer

Fig. 3: Transformer models correlation coefficients through
time as performance converges; the darker colour gradients
are higher layer representations, while the lighter the gradient
the deeper the layer.

5. DISCUSSION

The graph in Figure 3(a) shows the neural representation co-
efficiency across the layers of the baseline CNN-transformer

model through training. There is a distinct hierarchical be-
haviour observed without clear convergence even in the ear-
lier layers of the network, represented by the darker lines.
The uncertainty of the attention mechanism has been high-
lighted by the pathology across the epochs, which could sug-
gest that parameter re-weighting for the context information
is occurring in the deeper layers, represented by the lighter
lines. Very similar patterns can be observed through Figures
3(b) and 3(c) as both present the same instability of the deeper
layers throughout the epochs during training. However, one
of the only distinctions is that the convergence of the earlier
layers appears to occur earlier, at epoch 20, with the multi-
band model. Despite these small representational differences
in the neural representations across the earlier layers of each
model, they performed similarly on the Hub5’00 test set.

Furthermore, the experiment scenarios in this paper are
set with CNNs, multi-channel CNNs, and multi-band CNNs
to explicitly distinguish the input layers for the following
encoder-decoder transformer layers. The multi-band CNN
model explicitly modeled different frequency bands of the
acoustic signal separately and aggregated them together. The
multi-channel CNN model learned different representations
of the same acoustic signal with a mixture of experts ap-
proach to aggregate these representations. Although there
was a difference in convergence speed during training, the
overall representation learning and performance remain simi-
lar on the Switchboard train set. Thus it can be hypothesised
the transformer layers adapted different types of input repre-
sentations to a similar average representational space, which
highlights the memorisation capability of the transformers
rather than the generalisation. The performance of the CNN,
multi-channel CNN and multi-band CNN varied in the Call-
home and RT03 test sets. As the models were trained with
Switchboard data, if the transformer layers had generalised
the input acoustic signal and the target categorical lexicon dis-
tribution mapping, the result patterns on other test sets should
have been similar. These empirical results indicate that the
transformers do more memorisation than generalisation with
the training data.

6. CONCLUSION

Multi-band and multi-channel models have been imple-
mented for an End-to-End ASR task, with comparable results
to the baseline CNN-transformer approach on in-domain data
but worse on the out-of-domain data. The analysis of neural
representations within the models provided insight into the
potential memorisation behaviour of the transformer archi-
tecture. An extension to this work would be the analysis
of neural representations within End-to-End models on aug-
mented or noisy data to observe the properties of different
layers. These insights can be beneficial for few-shot learning
model development in the ASR domain.
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