
Transformer Model Compression for End-to-End
Speech Recognition on Mobile Devices

Leila Ben Letaifa
LaBRI, CNRS UMR 5800

Univ. de Bordeaux, Bordeaux INP
Talence, France

leila.ben-letaifa@labri.fr

Jean-Luc Rouas
LaBRI, CNRS UMR 5800

Univ. de Bordeaux, Bordeaux INP
Talence, France

jean-luc.rouas@labri.fr

Abstract—Transformer-based models have achieved state-of-
the-art performance in various areas of machine learning, includ-
ing automatic speech recognition. However, their cost in terms
of computational power, memory or energy consumption can be
exorbitant, hence the interest in compression techniques. Trans-
former models are mostly composed of attention and feedforward
components. In this paper, we propose to reduce the size of a
transformer model in an end-to-end speech recognition system by
decreasing the number and precision of linear layer parameters.
Specifically, we investigate the impact of weight pruning on
system performance. We then consider model quantization. To
further reduce the model size, we address the combination of
pruning and quantization methods. Experiments carried out
on several speech datasets from different languages show that
the memory footprint can be reduced by up to 84% with an
insignificant loss of accuracy.

Index Terms—End-to-end speech recognition, transformer
model, compression techniques, quantization, pruning.

I. INTRODUCTION

Deep learning has revolutionized several fields of informa-
tion systems, including natural language processing, image
classification and speech recognition. Traditional Automatic
Speech Recognition (ASR) systems are based either on hidden
Markov models [1] or on hybrid models derived from the
combination of neural networks and Markov models [2]. They
involve the tuning of several modules separately: acoustic
model, lexicon and language model. Through deep learning,
the functionality of all these components can be integrated into
a single neural network, leading to end-to-end ASR systems.
Several kinds of end-to-end (E2E) models have been re-
ported in the literature: Connectionist Temporal Classification
based (CTC) [3], attention-based encoder-decoder [4], joint
CTC/attention based [5] and RNN transducer [6].

Optimization of machine learning models is a recurrent
problem [7] [8]. Indeed, the computing resources available on
the market are increasing day by day leading to the tuning of
larger and often more accurate models on powerful computers.
However, the devices have more limited hardware resources in
terms of memory, computation and battery [9]. They usually
need smaller models to ensure low latency.

Neural network compression methods include quantization
[10], pruning [11], knowledge distillation [12], matrix de-

composition [13] and parameter sharing [14]. Although most
of these methods were originally proposed for convolutional
neural networks, some of them are directly applicable to
transformer model. Compared to basic models such as con-
volutional or recurrent neural networks, a transformer model
[15] has a relatively complex architecture composed of several
parts such as embedding layers, self-attention layers and
feedforward layers. Thus, the effect of compression methods
can vary when applied to different parts of it [14].

Research on transformer model compression in E2E speech
recognition has mainly focused on quantization [16] and
parameter sharing [17]. In this work, we extend it to weight
magnitude pruning. We will then discuss quantization. Finally,
the combination of both pruning and quantization approaches
is considered to further reduce the memory footprint.

The reminder of this paper is as follows: Section 2 reviews
compression techniques. Section 3 introduces briefly the ASR
transformer model. Section 4 presents our model compression
experiments. Section 5 discusses the experimental results and
Section 6 draws conclusions and describe future directions.

II. COMPRESSION TECHNIQUES

Model compression methods reduce the inference costs of
trained models. In particular, we consider two compression
techniques: quantization and pruning.

A. Quantization

By default, most systems uses float 32 types to represent
variables and weights. Quantization replaces floating points
with integers leading to less memory consumption and faster
calculations on certain hardware [10].
Quantization maps a floating point value x in [a, b] to a k−bit
integer xq in [−2k−1, 2k−1 − 1].

xq = round(
x− a

δ
)

where δ = b−a
2k−1

. In the case that x in not in the range of
[a, b], the clamp operator is applied :

clamp(x; a, b) = min(max(x, a), b)

The de-quantization function is defined as :

D(xq) = xq ∗ δ + a

439ISBN: 978-1-6654-6798-8 EUSIPCO 2022



Different quantization approaches have been proposed and can
be classified into two categories: post-training quantification
and quantification aware training [16].

B. Pruning

Deep learning models are often over-parameterized [11]
[18]. They have many insignificant weights that contribute
very little to the inference of the model. These weights can be
set to zero without significantly affecting performance [11].
The importance of the weights can be determined by their
magnitude, their gradients or a custom measurement [14].
There are two types of pruning:

• unstructured pruning [18], which removes individual
weights. Substituting the value of the weight with zero
in a weight matrix is equivalent to pruning a connection.
This pruning is also called sparse pruning because it
results in sparse matrices.

• structured pruning [19] focuses on pruning blocks of
weights, for example, by deleting entire channels at a
time. In practice, structured pruning sets an entire row or
column of a weight matrix to zero, which is the same as
deleting a neuron.

Pruning can be incorporated into the training process as an
additional step between training epochs (iterative pruning),
applied all at once after the model training is complete (one-
shot pruning), or applied between fine tuning steps.
Whether the pruning is applied globally to all model parame-
ters or is calculated independently for each layer, it is called
global pruning or local pruning. Global pruning groups all
the parameters of the layers and selects a global fraction of
them to prune. Local pruning removes a fixed percentage of
parameters from each layer.

III. TRANSFORMER MODEL

Transformer [20] is a sequence-to-sequence model that
maps an input sequence of acoustic features (x1, x2, ...xT ) of
length T to an output sequence of characters (y1, y2, .., yL) of
length U . Its architecture can be divided into two parts namely
the encoder and the decoder. The encoder converts the input
sequence into an intermediate sequence of encoded features
(h1, h2, ..., hN ) of length N . The decoder predicts a new
character yl based on the encoded features (h1, h2, ..., hN )
and the previous decoded characters (y1, y2, ..., yl−1). Both the
encoder and the decoder are composed of a stack of attention
and feedforward network blocks.

Our ASR transformer follows the same architecture as [21].
A simplified representation of its main components is shown
on Figure 1. Here, the input acoustic features are subsampled
using two convolution layers before being fed into the encoder.

IV. EXPERIMENTS AND RESULTS

We develop transformer-based ASR systems, then prune
and quantify the models and measure the performance. We
consider the trade-off between error and compression rates. In
quantization, the compression rate is the gain in model storage
space, whereas in pruning, it is rather the sparsity. To compare

Fig. 1. ASR Transformer main components

the results of the different methods, we propose a compression
rate based on doubly compressed models.

A. Data description

Four corpora from different languages, which are English,
French, Italian and Vietnamese, are used for all experiments.
They are respectively named Libri-trans [22], Ester [23], Vox-
forge [24] and Vivos [25]. Libri-trans is a part (∼ 236 hours) of
the LibriSpeech dataset, comprising annotated English audio
books. The Ester corpus contains transcripts of about 250
hours of broadcast news produced in the scope of the French
national ESTER project. The Voxforge project has also created
several databases including 20 hours of Italian audiobooks
forming VoxforgeIt. 16 hours of reading texts in Vietnamese
make up the Vivos database. The training part of each dataset
is employed for the parameters estimation and the rest for the
evaluation. This is around 3.5 hours for Libri-trans, 6.5 hours
for Ester and 1 hour for each of Voxforge and Vivos.

B. Baseline systems

Baseline end-to-end ASR systems are developed with the
Espnet toolkit [5]. In order to augment the amount of data,
their speed is perturbed. By using three different speeds,
the train dataset amount tripled. Then, 80 f-bank coefficients
are extracted and normalized with respect to the mean and
variance. Transcripts are represented by subword units, namely
characters for the Ester, Voxforge, and Vivos systems and
byte-pair coding subwords for the Libritrans system. Finally,
several transformer architectures are evaluated. Table I shows
the architecture of the best transformer models, their memory
size (in megabytes), their number of parameters (in millions)
and the error rates of the ASR systems. We consider the word
errors (WER) of the Libri-trans and Ester systems and the
character errors (CER) of the Voxforge and Vivos systems.

440



TABLE I
ASR MODELS SPECIFICATIONS: - ARCHITECTURE : NUMBER OF ENCODER
AND DECODER BLOCKS (ENC/DEC), DIMENSION OF HIDDEN LAYERS (FF
DIM) AND ATTENTION LAYERS (ATT DIM) AND NUMBER OF ATTENTION

HEADS (HEADS) - MEMORY SIZE (MB) - NUMBER OF PARAMETERS
(MILLIONS) - ERROR RATE (% WER/CER)

LIBRITRANS ESTER VOXFORGE VIVOS

ARCHITECTURE
ENC/DEC 12/6 18/6 12/6 8/2
FF DIM 1024 2048 2048 1024
ATT DIM 256 512 256 256
HEADS 4 4 4 4

MEMORY SIZE 107 343 134 87
PARAMETERS 27.92 89.64 35.07 15.65
ERROR RATE 6.6 14.1 9.1 14.7

C. Parameter distribution

Given the architecture of our transformer models, we
roughly distinguish two kinds of layers: convolution layers
and linear layers. The convolution layers are present in the
subsampling block. All other layers, i.e. input, attention,
feedforward and output layers are linear layers.

TABLE II
DISTRIBUTION OF THE PARAMETERS BETWEEN THE CONVOLUTION

LAYERS (CONV) AND THE LINEAR LAYERS OF THE ENCODER (ENCODER)
AND THE LINEAR LAYERS OF THE DECODER (DECODER).

CONV (%) ENCODER (%) DECODER (%)
LIBRI-TRANS 2.12 61.15 34.80
ESTER 2.63 69.10 28.14
VOXFORGE 1.68 71.16 27.00
VIVOS 3.78 75.52 20.30

Table II reports the percentage of parameters in the convo-
lutional layers, in the encoder and in the decoder. Since the
encoder and decoder contain the majority of the parameters,
we decided not to decrease the parameters of the convolutional
layers. In the following, the compression techniques will be
applied to the linear layers.

D. Pruning

One-shot pruning is applied to the trained models. The
pruning type is set to global or local. Then we vary the pruning
rate and report the recognition error rate. For the best trade-
off between error and compression rates, we tolerate a relative
increase in error rate of 10% . According to Fig. 2, the best
trade-offs are achieved with pruning rates of 33% for Libri-
trans, 37% for Ester, 55% for Voxforge and 62% for Vivos.
The pruning rate of a model is closely related to its size
when compressed by a classical method (such as gzip). Indeed,
classical methods are effective in reducing models containing
null strings. In addition, they are useful for storage on mobile
devices. Here, gzip compression is applied for comparison
purposes; the initial and pruned models are gzipped and their
ratio is calculated. The pruned models are those with pruning
ratios satisfying the tradeoffs. Table III shows that pruning can
reduce the size of compressed models by half.

Fig. 2. Error rate as a function of local and global pruning rate for the four
ASR systems: Libri-trans, Ester, Voxforge and Vivos

TABLE III
SIZE OF INITIAL GZIP-COMPRESSED AND PRUNED GZIP-COMPRESSED

MODELS (IN MEGABYTES) AND THEIR RATIO (PRUNE.GZ/INIT.GZ)

LIBRITRANS ESTER VOXFORGE VIVOS
INIT.GZ (MB) 99 318 124 80
PRUNE.GZ (MB) 72 228 72 41
RATIO (%) 72.72 71.69 58.06 51.25

441



E. Quantization

Initially all model parameters are stored and processed in
real 32-bit format. An 8-bit integer quantization is performed
on the encoder and decoder weight matrices. Activations are
quantized on the fly during inference and stored as 32-bit real
values.

Fig. 3. Size of the initial and quantized models.

For all systems, the performance decrease is insignificant
(less than 0.1%). Regarding the model size, Fig. 3 shows that
quantized models are more than 70% smaller.
The initial and quantized models are then compressed by gzip.

TABLE IV
SIZE OF GZIP-COMPRESSED QUANTIZED MODELS (IN MEGABYTES) AND

THEIR RATIO TO THE INITIAL GZIP-COMPRESSED MODELS.

LIBRITRANS ESTER VOXFORGE VIVOS
QUANT.GZ (MB) 23 72 29 21
RATIO (%) 23.23 22.64 23.38 26.25

According to Table IV, the quantized models are about four
times smaller than the initial models.

F. Pruning then Quantization

Pruning and quantization are now applied successively for a
better accuracy/size trade-off. This is performed in three steps.

1) set the pruning rate
2) prune the model
3) quantize the model
The initial and final models are then gzipped and their size

ratios are computed to assess the joint contribution of pruning
and quantization. We plot the model size ratios and error rates
in Fig. 4 and derive the best trade-off. The error rate threshold
is set to 1.1 * error-rate. This threshold is associated with a
certain pruning rate which in turn induces the compression
rate of the trade-off (it is highlighted by a large orange dot).

The pruning and compression rates of the best trade-offs are
reported in Table V. We note that the pruning rate recorded is
generally slightly lower than that for pruning alone (see Fig.
2). However, the compression ratio of all models is better than
that of pruning and quantization alone (Table III and Table

IV). A final compression of about 84% for Vivos, 82% for
Voxforge, 80% for Libri-trans and 79% for Ester is achieved.

Fig. 4. Pruning and quantization of Libri-trans, Ester, Voxforge and Vivos
models: Error and compression rates as a function of pruning rate

V. DISCUSSION

Structured pruning leads to 62% sparser models. Quanti-
zation from float32 to int8 divides the model size by four.
Reducing the accuracy of sparse matrices, i.e., combining

442



TABLE V
INITIAL AND FINAL ERROR RATES, PRUNING RATE, SIZE OF INITIAL
GZIP-COMPRESSED AND PRUNED+QUANTIZED GZIP-COMPRESSED
MODELS (IN MEGABYTES) AND THEIR RATIO (FINAL.GZ/INIT.GZ)

LIBRITRANS ESTER VOXFORGE VIVOS
INIT. ERROR (%) 6.6 14.1 9.1 14.7
FINAL ERROR (%) 7.2 15.6 10.1 16.1
INIT.GZ (MB) 99.0 318.0 124.0 80.0
PRUNING RATE (%) 33.4 34.5 53.5 56.0
FINAL.GZ (MB) 20.2 68.0 20.5 14.7
RATIO (%) 20.5 21.4 16.6 18.4

pruning and quantization, takes advantage of both methods
and achieves a compression of about 84%.

The Voxforge and Vivos systems have the highest pruning
rates. A closer look at these systems reveals that their models
are large and their databases are small. In fact, Voxforge and
Vivos models have sizes comparable to that of Libri-trans (see
Table I). At the same time, they are trained on more than 10
times smaller amount of data; they are obviously more over-
parameterized. This is not reflected by quantization, which
reduces the accuracy of all weights regardless of their values
(very small or not).

Although the Libri-trans and Ester datasets are nearly the
same size, the Ester models are larger. They are also less well
compressed. This can be due to the difference in language.
French speech can have higher variability, which implies a
larger and denser model.

VI. CONCLUSION AND FUTURE WORK

In this paper, we explore weight pruning of transformer
models in end-to-end speech recognition. This research is
carried out on four different language systems: English,
French, Italian and Vietnamese. We realize that the more
over-parameterized the models are the more pruned they
are, leading to about 62% more sparse matrices. Next, we
evaluate the impact of degrading the precision of the models
by quantization and we achieve a fourfold reduced model
memory footprint for an insignificant increase in error rate.
To further downsize the model, we lower the precision of the
pruned models. This results in an overall model compression
of about 84%. Future work includes fine-tuning the models and
exploring the combination with other compression techniques.

ACKNOWLEDGMENT

The research presented in this paper is conducted as part
of the project FVLLMONTI that have received funding from
the European Union’s Horizon 2020 Research and Innovation
action under grant agreement No 101016776.

REFERENCES

[1] L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Prentice Hall, 1993.

[2] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
IEEE Transactions on audio, speech and language processing, 2012.

[3] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” 2006.

[4] J. Chorowski, D. Bahdanau, K. Cho, and Y. Bengio, “End-to-end
continuous speech recognition using attention-based recurrent nn: First
results,” in Deep Learning and Representation Learning Workshop,
NIPS, 2014.

[5] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen, A. Renduchintala,
and T. Ochiai, “Espnet: End-to-end speech processing toolkit.” Pro-
ceedings of Interspeech, 2018, pp. 2207–2211.

[6] F. Boyer, Y. Shinohara, T. Ishii, H. Inaguma, and S. Watanabe, “A study
of transducer based end-to-end asr with espnet: Architecture, auxiliary
loss and decoding strategies,” in Proceedings ASRU, 2021.

[7] L. Zouari and G. Chollet, “Efficient codebooks for fast and accurate
low resource asr systems,” Speech Communication, vol. 51, pp. 732–
743, 2009.

[8] L. Zouari and Chollet, “Multi-level gaussian selection for accurate low-
resource asr systems,” in International Conference on Human Language
Technologies, 2007.

[9] L. Beltaifa-Zouari, “Embedded real time speech recognition system for
smart home environment,” IJSER, 2017.

[10] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, p. 6869–6898, 2017.

[11] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” in Advances
in Neural Information Processing Systems, 1989, pp. 598–60.

[12] H.-G. Kim, H. Na, H. Lee, J. Lee, T. G. Kang, M.-J. Lee, and Y. S. Choi,
“Knowledge distillation using output errors for self-attention end-to-end
models,” in Proceedings ICCASP, 2019.

[13] M. B. Noach and Y. Goldberg, “Compressing pre-trained language
models by matrix decomposition,” in International Joint Conference on
Natural Language Processing, 2020.

[14] P. Ganesh, Y. Chen, X. Lou, M. A. Khan, Y. Yang, H. Sajjad, P. Nakov,
D. Chen, and M. Winslett, “Compressing large-scale transformer-based
models: A case study on bert,” Transactions of the Association for
Computational Linguistics, vol. 9, 2021.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, 2017.

[16] A. Bie, B. Venkitesh, J. Monteiro, M. A. Haidar, and M. Rezagholizadeh,
“A simplified fully quantized transformer for end-to-end speech
recognition,” 2020. [Online]. Available: https://arxiv.org/abs/1911.03604

[17] S. Li, D. Raj, X. Lu, P. Shen, T. Kawahara, and H. Kawai, “Improving
transformer-based speech recognition systems with compressed structure
and speech attributes augmentation.” Graz, Austria: Proceedings of
Interspeech, 2019, pp. 4400–4404.

[18] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights
and connections for efficient neural networks,” in Advances in Neural
Information Processing Systems, 2015.

[19] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM Journal on Emerging Technologies
in Computing Systems, vol. 1, p. 1–18, 2017.

[20] S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang,
M. Someki, N. E. Y. Soplin, R. Yamamoto, X. Wang, S. Watanabe,
T. Yoshimura, and W. Zhang, “A comparative study on transformer vs
rnn in speech applications,” in ASRU, 2019.

[21] L. Dong, S. Xu, and B. Xu, “Speech-transformer: A no-recurrence
sequence-to-sequence model for speech recognition.” Proceedings the
International Conference on Acoustics, Speech, and Signal Processing,
2018.

[22] A. C. Kocabiyikoglu, L. Besacier, and O. Kraif, “Augmenting librispeech
with french translations: A multimodal corpus for direct speech transla-
tion evaluation,” in LREC, 2018.

[23] S. Galliano, G. Gravier, and L. Chaubard, “The ester 2 evaluation
campaign for the rich transcription of french radio broadcasts,” in
Interspeech, 2009, p. 2583–2586.

[24] “Voxforge (italian). http://www.voxforge.org,” 2019.
[25] H.-T. Luong and H.-Q. Vu, “A non-expert kaldi recipe for vietnamese

speech recognition system,” in WLSI/OIAF4HLT, 2016.

443


