
Continual Learning for Monolingual End-to-End
Automatic Speech Recognition

Steven Vander Eeckt and Hugo Van hamme

KU Leuven
Department Electrical Engineering ESAT-PSI

Kasteelpark Arenberg 10, Bus 2441, B-3001 Leuven Belgium
{steven.vandereeckt, hugo.vanhamme}@esat.kuleuven.be

Abstract—Adapting Automatic Speech Recognition (ASR)
models to new domains results in a deterioration of performance
on the original domain(s), a phenomenon called Catastrophic For-
getting (CF). Even monolingual ASR models cannot be extended
to new accents, dialects, topics, etc. without suffering from CF,
making them unable to be continually enhanced without storing
all past data. Fortunately, Continual Learning (CL) methods,
which aim to enable continual adaptation while overcoming CF,
can be used. In this paper, we implement an extensive number
of CL methods for End-to-End ASR and test and compare
their ability to extend a monolingual Hybrid CTC-Transformer
model across four new tasks. We find that the best performing
CL method closes the gap between the fine-tuned model (lower
bound) and the model trained jointly on all tasks (upper bound)
by more than 40%, while requiring access to only 0.6% of the
original data.

Index Terms—End-to-End Automatic Speech Recognition,
Continual Learning, Monolingual Speech Recognition

I. INTRODUCTION

Automatic Speech Recognition (ASR) has greatly pro-
gressed in recent years, moving from Hidden Markov Model
(HMM) to End-to-End (E2E) models. However, like the Ar-
tificial Neural Networks (ANN) they use, E2E ASR models
suffer from Catastrophic Forgetting (CF) [1] when adapted to
new tasks, even for monolingual tasks: it suffices that the data
distributions of the old and new tasks differ for CF to occur.
Fortunately, many Continual Learning (CL) methods have
been proposed in the image classification community, enabling
ANNs to learn continually without suffering from CF. Fol-
lowing [2], CL methods are categorized into three groups: i)
the regularization-based methods use a regularization loss to
train new tasks such that it does not hurt the performance of
previous tasks. [3]–[5] do this by estimating the importance of
each parameter to previous tasks and using these importance
weights in a weighted L2 regularization to learn new ones.
[6] uses knowledge distillation [7] on the new tasks’ data to
transfer knowledge from the old to the new model; ii) the
replay-based methods store a set of representative samples in
a memory to rehearse old tasks when learning new ones. Most
straightforward are [8]–[10], which train on the new task and
the memory jointly. Alternatively, [11], [12] focus on gradient
alignment between old and new tasks; iii) the architectural-
based methods increase the model’s capacity when learning

new tasks. The latter are not considered in this paper.
Regarding ASR and, especially, E2E ASR, CL is a very new
and unexplored topic. [13], [14] apply CL to the acoustic
model of a HMM-based ASR model. [15] considers CL for
the pre-trained wav2vec2 model [16]. [17] combines a Text-
to-Speech and ASR model to prevent forgetting. [18] applies
Learning without Memorizing [19] to E2E ASR, focusing on
a scenario where subsequent tasks are much smaller than the
initial one. Finally, [20] implements four existing CL methods
for E2E ASR. Compared to [20], we implement an extra
seven CL methods for E2E ASR. We test and compare their
ability to continually extend and enhance a monolingual E2E
ASR by training it on new data. To make the experiments
more realistic, we run the methods without assuming access to
validation sets of previous tasks to optimize hyper-parameters.
Since for many CL methods, both regularization-based and
rehearsal-based, the weight of the regularization is a crucial
hyper-parameter, we propose, based on [2], a simple and
efficient way to determine this weight.

II. CONTINUAL LEARNING FOR E2E ASR

We first elaborate on the considered E2E ASR model as
well as on the objective of Continual Learning for E2E ASR.
Model. Our model is the Hybrid CTC/Transformer from [21].
Its loss during training is computed as:

L(X, y; θ) = c · Lc(X, y; θ) + (1− c) · Ld(X, y; θ) (1)

where Lc(X, y; θ) and Ld(X, y; θ) are, respectively, the CTC
and Decoder Cross-Entropy (CE) loss of the model with
parameters θ on utterance X with ground truth y. As in [21],
the weight of CTC for training and decoding is c = 0.3. No
Language Model is used during decoding. The outputs of the
model are 300 word pieces, generated by the Sentence Piece
model [22] on the training data of the first task.
Notation. Denote f c(X; θ) ∈ RL×o and fd(X; θ) ∈ RW×o

the CTC and Decoder output, respectively, of the model
with parameters θ, given utterance X , with L, W and o the
utterance length, output length and number of word pieces.
During training, fd(X; θ) is conditioned on ground truth y.
Problem formulation. Let D1, D2, .., DT represent the la-
beled training datasets of the T tasks. If θt are the model’s
parameters after learning t tasks, then the objective of the CL

459ISBN: 978-1-6654-6798-8 EUSIPCO 2022



methods is to learn tasks 1, .., T in sequence such that after T
tasks, θT , adapted from θT−1, satisfies:

θT = argmin
θ

T∑
t=1

∑
(X,y)∈Dt

L(X, y; θ) (2)

However, when learning task T on DT , access to D1, ..., DT−1

is assumed to be lost (though storing a small number of
utterances per task in a memory is allowed for the rehearsal-
based methods), thus θT cannot be directly computed from (2).
In addition, we assume that we can no longer use the previous
tasks’ validation sets (to optimize hyper-parameters of the CL
methods). We consider this a more realistic scenario.

III. CONTINUAL LEARNING METHODS

We consider both regularization- and rehearsal-based meth-
ods. As E2E ASR models have a complex architecture and are
computationally demanding to train, we focus on lightweight
methods which are easily applicable to any ANN architecture,
and have proven to work well in other domains.

A. Regularization-based Methods

The regularization-based methods compute a regularization
loss which is added to L(X, y; θ) from (1) during training.
Elastic Weight Consolidation (EWC). After training task t,
EWC [3] computes the diagonal of the Fisher information
matrix, denoted Ωt. Ωt

ii is considered the importance weight of
parameter θi for task t. Next, Ωt is added to Ω≤t = Ω≤t−1+Ωt

as in [23], and used in the regularization loss to learn task t+1:

Lewc(θ) =
λ

2
(θ − θt)TΩ≤t(θ − θt) (3)

Since Ωt is diagonal, (3) reduces to a weighted L2 regulariza-
tion, with weight Ωt

ii for parameter θi.
Memory-Aware Synapses (MAS). MAS [4] works similar as
EWC, but computes (the diagonal of) Ωt differently. Given
that the ASR model has both a CTC and Decoder output, we
compute Ωt for MAS as follows:

Ωt
ii = EX∼Dt

[∣∣∣∣c∂∥f c(X; θt)∥2

∂θi
+ (1− c)

∂∥fd(X; θt)∥2

∂θi

∣∣∣∣]
(4)

Next, the loss is exactly the same as for EWC in (3).
Continual learning with Sampled Quasi-Newton (CSQN).
CSQN [24] was proposed to extend EWC by considering
interactions between parameters. Starting from EWC’s Ωt,
CSQN considers quasi-Newton methods to compute low-rank
approximations of the Hessian of the loss, which are then used
as in (3) to regularize training. We consider both the standard
and the reduced version, which was called BTREE in [24] and
which we here denote CSQN-BT.
Learning Without Forgetting (LWF). LWF [6], when learn-
ing task t+1, uses knowledge distillation [7] between the old

model (with parameters θt) as teacher and the current model
(with parameters θ) as student, on the new task’s data:

Llwf (X; θ) = λ · (c
L∑

i=1

o∑
j=1

f c
i,j(X; θt)

γ
log

f c
i,j(X; θ)

γ

+ (1− c)

W∑
i=1

o∑
j=1

fd
i,j(X; θt)

γ
log

fd
i,j(X; θ)

γ
)

(5)

With γ called the temperature. In our experiments, γ = 1.

B. Rehearsal-based Methods

The rehearsal-based methods use a small memory of exem-
plars of previous tasks to enable CL.
Experience Replay (ER). We consider three variants of ER
[8]. In the standard variant, the mini-batch from the current
task is augmented with a mini-batch sampled from memory
and sent through the model to compute the loss. As this may
result in overfitting on the memory, the loss of the mini-batch
sampled from memory may be given a weight λ ∈ (0, 1),
denoted ER (λ). Alternatively, as in [9], the training set and
memory can be merged to train on the resulting set, referred
to as BER (Batch-level ER).
Average-Gradient Episodic Memory (A-GEM). Consider
g = ∂L(X,y;θ)

∂θ with (X, y) a mini-batch from the current
task. Before g is used to update the model, A-GEM [12]
samples a mini-batch (X̃, ỹ) from memory, and computes
gref = ∂L(X̃,ỹ;θ)

∂θ . If g and gref interfere, i.e. if gT gref < 0,
it updates g with g ← g− gT gref

gT
refgref

gref such that the gradients
align. The resulting gradient is used to update the model. A-
GEM is the more efficient version of GEM (Gradient-Episodic
Memory) [11], which was the best method in [20].
Knowledge Distillation (KD). KD uses the same loss as LWF
in (5), not computed on a mini-batch of the new task, but on
a mini-batch sampled from the memory. Note that this loss is
added to (1), so the new task is still learned using the CE loss.

IV. EXPERIMENTS

Experiments were done in ESPnet [25]. For detailed infor-
mation and more extensive results, see our repository 1.
Data. We use the Corpus Gesproken Nederlands (CGN)
dataset [26], which contains 900 hours of Dutch speech from
both the Netherlands (NL) and Belgium (VL). We consider all
except the more spontaneous speech and, based on the dialect
of the speakers, split the data into four tasks: NL-main, VL-
main, NL-rest, VL-rest (learned in this order). Each task is
further split into a training, validation and test set.
Training. We use the optimizer from [21], with a learning
rate of 10.0 for the first task and 1.0 for subsequent tasks. We
allow models to run for 230 epochs, but stop early when the
Token Error Rate (TER) at word piece level on the new task’s
validation set has not improved for 10 epochs. As in [27], we
average the last 10 snapshots to obtain a final model.

1https://github.com/StevenVdEeckt/CGN CL Dialect

460



Determining λ. Many of the CL methods require setting a
hyper-parameter λ, the weight of the regularization. Based
on [2], we propose a simple and efficient way to determine
λ for E2E ASR. First, we consider τ init, the TER (on
the new task’s validation set) of the initial model. Next,
we adapt the model for five epochs without regularization,
and compute its TER, obtaining τno reg. Then, we set λ
to a high value and run the model for five epochs with
regularization with weight λ. We compute the TER and obtain
τ . If (τ − τ init)/(τno reg− τ init) > a, i.e. if the gap between
τ init and τno reg is closed for at least 100a%, we return λ;
else, we set λ ← pλ with p ∈ (0, 1) and repeat the process.
As such, determining λ is done in a fast and efficient way and
does not require access to a validation set of previous tasks.
We determine λ only for the first adaptation and then fix it.
In our experiments, we set a = 0.85 and p = 0.10. Moreover,
for each method, the initial value of λ is a power of 10.
Memory. After learning a task, we sample 500 utterances from
the training set to add to the memory. While sampling uni-
formly, we only consider utterances whose output length (i.e.
number of word pieces in output) exceeds 0.40·mean length,
where mean length is the average output length of the
utterances in the training set, to make sure that all of the 500
utterances contain meaningful sentences.
Baselines. Following baselines are considered: (i) Fine-Tuning
(FT): the model is adapted without CL method (lower bound);
(ii) Joint (JT): trained from scratch on all tasks jointly; (iii)
Continued Joint (CJT): adapted from previous task and trained
on current and previous tasks jointly (upper bound).
Metrics. For each method, we report the Average WER
(AWER), Backward Transfer (BWT) and Forward Transfer
(FWT) [11], and Coverage (COV) [13]. Assuming T tasks
have been learned and Ri,j is the WER on task j after learning
up to task i, AWER =

∑T
i=1 RT,i, while the BWT is:

BWT =
1

T − 1

T−1∑
i=1

−(RT,i −Ri,i) (6)

Note that using this definition, negative BWT indicates forget-
ting. Furthermore, we define FWT as:

FWT =
1

T − 1

T∑
i=2

−(Ri,i −RFT
i,i ) (7)

where RFT
i,j is the WER on task j after learning up to task

i with FT. FWT measures to which extent the model can
exploit previously acquired knowledge to learn new tasks
better. Positive FWT indicates better learning than FT. Finally,
COV measures the extent to which the given method closes
the gap between FT (lower bound) and CJT (upper bound)
in terms of AWER. It is 0% when the method performs as
poor as FT, and 100% when the method performs as well as
CJT. In addition to AWER, BWT, FWT and COV, we report
the storage requirements (Storage), expressed in an equivalent
number of models (one model requiring 105 MB).
Statistical significance. We use the Wilcoxon signed-rank
test on the number of errors per utterance [28] to test the

TABLE I: Results after learning the four tasks. Significance
level refers to improvement over baseline FT.

Model AWER↓ BWT↑ FWT↑ COV↑ Storage

JT 21.3 - - - 260.54
CJT 21.9 +2.5 +0.5 100.0% 261.54

FT 27.3 -4.2 - 0.0% 1.00

EWC 28.3 -0.7 -4.8 -18.9% 2.00
MAS 28.3 -1.1 -4.4 -18.9% 2.00
CSQN 27.7 -1.5 -3.2 -8.7% 32.00
CSQN-BT 27.8 -1.7 -3.2 -9.8% 22.00
LWF 26.6∗∗∗ -3.3 +0.1 12.4% 1.00

A-GEM 26.1∗∗∗ -2.5 -0.0 22.0% 3.24
ER 28.0 -3.4 -1.7 -13.1% 3.24
ER (λ) 25.8∗∗∗ -1.9 -0.3 27.2% 3.24
BER 26.4∗∗∗ -2.8 -0.2 16.7% 3.24
KD 25.0∗∗∗ -1.2 +0.0 41.7% 3.24

TABLE II: WER on Test set and Memory of initial task NL-
main after the first adaptation to VL-main. ’Initial’ is the model
trained on NL-main, from which the other models are adapted.

Model Test Memory

Initial 27.1 10.7
FT 33.0 21.8

A-GEM 31.0 2.6
ER 32.7 0.0
ER (λ) 30.6 0.4
BER 32.3 13.9
KD 29.4 10.5

significance of the results, considering significance levels
α = 0.05 (∗), α = 0.01 (∗∗) and α = 0.001 (∗∗∗).

V. RESULTS

Table I shows the results after learning the four tasks in
sequence. First, we note that FT indeed suffers from CF,
while both JT and CJT are able learn the tasks well, with the
latter reaching a positive BWT and FWT.
Considering the regularization-based methods, we find that the
methods estimating which parameters are important experience
difficulties learning the four tasks. This is especially true
for EWC and MAS, both performing worse than FT. While
CSQN and CSQN-BT, by considering interactions between
parameters, perform slightly better, they still underperform FT.
We hypothesize that the poor performance of these methods
is due to the tasks (being very similar) having the same
important parameters, which gives the model two options:
either it updates these parameters, resulting in CF of previous
tasks; or it leaves them unchanged, resulting in poor learning
of the new tasks. In this experiment, EWC, MAS and CSQN
reduce forgetting, but fail to learn the new tasks well. While
EWC achieves the best BWT of all methods, it also attains
the worst FWT. Note that the performance of EWC is in
line with [20], which also found EWC underperforming FT.
Compared to EWC, MAS and CSQN, LWF performs much
(and significantly, with α = 0.001) better, achieving the
highest FWT (higher than FT). However, its COV is only
12.4%, as it reduces FT’s forgetting (BWT) by only 21%.

461



Fig. 1: COV after learning the four tasks.

Comparing LWF to KD, which uses the same regularization
but computed on the memory instead of on the new task’s
data, we find that having access to a memory, even though it
is only 0.6% of the original data when learning the fourth task,
yields big improvements (with significance level α = 0.001).
KD attains a COV of over 40%, and learns the new tasks as
well as FT, while reducing the latter’s forgetting by more than
70%. It outperforms the other rehearsal-based methods by a
large margin (with significance level α = 0.001). A-GEM,
while it learns the new tasks well, still suffers from severe
forgetting, reaching a COV of 22%. This is again consistent
with [20], which found GEM (of which A-GEM is a more
efficient variant) outperforming LWF, while both improved the
performance of FT. Finally, ER performs worse than FT, as it
suffers from CF and is unable to learn the new task well. Both
BER, and especially ER (λ), perform much better, reaching a
COV of 16.7% and 27.2%, respectively.
Table II gives us more insight into how the rehearsal-based
methods work. It shows the WER on the memory and test
set of the initial task NL-main of models adapted to VL-main.
For ER, we note that it memorizes the memory completely,
achieving 0.0 WER, and this generalizes very poorly to the
test set. ER (λ) alleviates this, though it still almost perfectly
memorizes the memory set. A-GEM, too, has a very low WER
on the memory set. On the other hand, KD only very slightly
improves on the memory set, but it is able to extract much
more ’general’ knowledge from it, limiting the forgetting on
the test set much better than ER, ER (λ) or A-GEM.
Figure 1 shows the COV after learning each task. We find
that after two tasks, LWF performs as well as A-GEM and
ER (λ). However, as more tasks are added, the gap between
LWF, and A-GEM and ER (λ) widens. Moreover, while BER
after two tasks only slightly outperforms FT, its performance,
relative to FT and the other CL methods, improves as more
tasks are added. This is as expected, since BER, learning on
the merger of the training set and the memory, clearly benefits
from having a larger memory. Finally, note how many CL
methods’ performance drops when learning NL-rest. That is
because NL-main and NL-rest are very similar, so the CL
methods should enable the model to learn NL-rest, as this will

TABLE III: Results after learning the four tasks with fixed
memory. Significance level refers to deterioration compared to
corresponding method from Table I (with increasing memory).

Model AWER↓ BWT↑ FWT↑ COV↑ Storage

A-GEM 26.2∗ -2.8 -0.0 18.9% 1.72
ER (λ) 25.6 -1.6 -0.4 29.8% 1.72
KD 25.2∗ -1.5 +0.1 38.3% 1.72

also benefit NL-main, while protecting VL-main. While this is
a realistic scenario when extending a monolingual ASR model,
it turns out to be a very challenging one, especially for EWC,
MAS and CSQN, which, by protecting NL-main’s important
parameters, are unable to exploit NL-rest to further improve
these parameters.

A. Increasing vs. Fixed Memory

The rehearsal-based methods from Table I had access to a
memory with 500 utterances per task. In practice, it may be
more desirable and/or feasible to have a memory with fixed
size, especially as the number of tasks becomes large. To this
end, we fix the size of the memory at 500. Table III shows
the results for A-GEM, ER (λ) and KD.
We find that the differences with Table I are small. For A-
GEM and KD, we observe a slight (though significant, with
α = 0.05) deterioration of AWER. For ER (λ), on the other
hand, there is even a minor improvement, which, not being
statistically significant, is attributed due to chance. Even for
a very small and fixed memory (with only 0.2% of original
training data after four tasks), A-GEM and, in particular, ER
(λ) and KD are thus highly effective in enabling CL.

B. Storage Requirements

Table I shows the storage requirements of the CL methods
to learn the fourth task. For all methods except JT, which for
each new task starts from scratch, this requires, first of all, the
storage of the model itself. In addition, the rehearsal-based
methods require storing an equivalent of 2.24 models, as they
need to store the utterances in the memory.
Compared to the rehearsal-based methods, the regularization-
based methods are more storage efficient (in addition to not
requiring data from previous tasks to be stored in a memory,
which may be, due to e.g. privacy concerns, not always al-
lowed). While LWF requires storing only the previous model,
EWC and MAS, in addition, need to store the importance
weights. Compared to the latter, CSQN and CSQN-BT are
less storage efficient, due to the Hessian approximations.
With an increasing memory, as in Table I, the rehearsal-based
methods’ storage requirements also increase linearly with the
number of tasks. However, as we saw in Table III, this can be
overcome by fixing the memory size, with only a negligible
deterioration in performance, enabling A-GEM, and, espe-
cially, ER (λ) and KD, to achieve excellent performance while
being very storage efficient, requiring to store an equivalent of
only 1.72 models (independent of number of tasks). Finally,
note how JT and CJT, needing access to all data the model

462



was ever trained on, require storing an equivalent of 260.54
and 261.54 models, respectively, making them clearly not a
practical solution to overcome CF.

VI. CONCLUSION

In this paper, we implemented an extensive number of CL
methods, and tested and compared their ability to extend a
monolingual E2E ASR model across four tasks. Having access
to a memory, though very small compared to the original
training set, proved to be very beneficial, as the rehearsal-
based methods generally performed much better than the
regularization-based methods. To assure the former’s storage
requirements do not increase with the number of tasks, the
memory size can be fixed with only a negligible degradation
in performance. In general, thus, the rehearsal-based methods
seem the best and most practical way to currently overcome
CF in monolingual E2E ASR models; in particular KD, which
closes the gap between the Fine-Tuned (lower bound) and
Continued Joint model (upper bound) for 41.7% and 38.3%
while having access to only 0.6% and 0.2%, respectively, of
the original data. In case storing utterances from previous
tasks is not allowed, LWF seems to be the best option, as the
other regularization-based methods, which have higher storage
requirements, were unable to improve the Fine-Tuning lower
bound. However, even in case only a very small number of
utterances per task can be stored, it is advised to do so.

REFERENCES

[1] Michael McCloskey and Neal J. Cohen, “Catastrophic interference in
connectionist networks: The sequential learning problem,” vol. 24 of
Psychology of Learning and Motivation, pp. 109–165. Academic Press,
1989.

[2] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia,
Ales Leonardis, Greg Slabaugh, and Tinne Tuytelaars, “A continual
learning survey: Defying forgetting in classification tasks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, p. 1–1,
2021.

[3] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness,
Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan,
Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the National
Academy of Sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[4] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus
Rohrbach, and Tinne Tuytelaars, “Memory aware synapses: Learning
what (not) to forget,” in Computer Vision – ECCV 2018, Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and Yair Weiss, Eds., Cham,
2018, pp. 144–161, Springer International Publishing.

[5] Friedemann Zenke, Ben Poole, and Surya Ganguli, “Continual learning
through synaptic intelligence,” in Proceedings of the 34th International
Conference on Machine Learning - Volume 70. 2017, ICML’17, p.
3987–3995, JMLR.org.

[6] Zhizhong Li and Derek Hoiem, “Learning without forgetting,” in
Computer Vision – ECCV 2016, Bastian Leibe, Jiri Matas, Nicu Sebe,
and Max Welling, Eds., Cham, 2016, pp. 614–629, Springer International
Publishing.

[7] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean, “Distilling the knowl-
edge in a neural network,” in NIPS Deep Learning and Representation
Learning Workshop, 2015.

[8] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and
Gregory Wayne, “Experience replay for continual learning,” in Advances
in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. 2019,
vol. 32, Curran Associates, Inc.

[9] Zheda Mai, Hyunwoo J. Kim, Jihwan Jeong, and Scott Sanner, “Batch-
level experience replay with review for continual learning,” ArXiv, vol.
abs/2007.05683, 2020.

[10] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Tha-
laiyasingam Ajanthan, Puneet Kumar Dokania, Philip H. S. Torr, and
Marc’Aurelio Ranzato, “On tiny episodic memories in continual
learning,” arXiv: Learning, 2019.

[11] David Lopez-Paz and Marc’Aurelio Ranzato, “Gradient episodic mem-
ory for continual learning,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, Red Hook, NY,
USA, 2017, NIPS’17, p. 6470–6479, Curran Associates Inc.

[12] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mo-
hamed Elhoseiny, “Efficient lifelong learning with a-gem,” in ICLR,
2019.

[13] Brady Houston and Katrin Kirchhoff, “Continual Learning for Multi-
Dialect Acoustic Models,” in Proc. Interspeech 2020, 2020, pp. 576–
580.

[14] Samik Sadhu and Hynek Hermansky, “Continual Learning in Automatic
Speech Recognition,” in Proc. Interspeech 2020, 2020, pp. 1246–1250.

[15] Samuel Kessler, Bethan Thomas, and Salah Karout, “Continual-
wav2vec2: an application of continual learning for self-supervised
automatic speech recognition,” arXiv, 2021.

[16] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael
Auli, “wav2vec 2.0: A framework for self-supervised learning of speech
representations,” in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds.
2020, vol. 33, pp. 12449–12460, Curran Associates, Inc.

[17] Amin Fazel, Wei Yang, Yulan Liu, Roberto Barra-Chicote, Yixiong
Meng, Roland Maas, and Jasha Droppo, “Synthasr: Unlocking synthetic
data for speech recognition,” CoRR, vol. abs/2106.07803, 2021.

[18] Li Fu, Xiaoxiao Li, and Libo Zi, “Incremental learning for end-to-end
automatic speech recognition,” ArXiv, vol. abs/2005.04288, 2020.

[19] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and
Rama Chellappa, “Learning without memorizing,” 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
5133–5141, 2019.

[20] Heng-Jui Chang, Hung yi Lee, and Lin shan Lee, “Towards Lifelong
Learning of End-to-End ASR,” in Proc. Interspeech 2021, 2021, pp.
2551–2555.

[21] Shigeki Karita, Nelson Enrique Yalta Soplin, Shinji Watanabe, Marc
Delcroix, Atsunori Ogawa, and Tomohiro Nakatani, “Improving
Transformer-Based End-to-End Speech Recognition with Connectionist
Temporal Classification and Language Model Integration,” in Proc.
Interspeech 2019, 2019, pp. 1408–1412.

[22] Taku Kudo and John Richardson, “SentencePiece: A simple and
language independent subword tokenizer and detokenizer for neural
text processing,” in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System Demonstrations,
Brussels, Belgium, Nov. 2018, pp. 66–71, Association for Computational
Linguistics.

[23] Ferenc Huszár, “On quadratic penalties in elastic weight consolidation,”
ArXiv, vol. abs/1712.03847, 2017.

[24] Steven Vander Eeckt and Hugo Van hamme, “Continual learning with
quasi-newton methods,” TechRxiv, Sep 2021.

[25] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro
Nishitoba, Yuya Unno, Nelson Enrique Yalta Soplin, Jahn Heymann,
Matthew Wiesner, Nanxin Chen, Adithya Renduchintala, and Tsubasa
Ochiai, “ESPnet: End-to-end speech processing toolkit,” in Proceedings
of Interspeech, 2018, pp. 2207–2211.

[26] Nelleke Oostdijk, “The spoken dutch corpus: Overview and first
evaluation,” Proceedings of LREC-2000, Athens, vol. 2, 01 2000.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin, “Attention
is all you need,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. 2017, vol. 30, Curran Associates,
Inc.

[28] Helmer Strik, Catia Cucchiarini, and Judith M. Kessens, “Comparing
the recognition performance of csrs: in search of an adequate metric and
statistical significance test,” in INTERSPEECH, 2000.

463


