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Abstract—Speaker diarization systems process audio files by
labelling speech segments according to speakers’ identities. Many
speaker diarization systems work offline and are not suited
for online applications. We present a semi-supervised, online,
low-complexity system. While, in general, speaker diarization
operates in an unsupervised manner, the presented system
relies on the enrollment of the participating speakers in the
conversation. The diarization system has two main novel aspects.
The first one is a proposed online learning strategy that evaluates
processed segments according to their usefulness for learning a
speaker, i.e. update a speaker model with it. The segment is
evaluated using two metrics to determine whether to use the
segment to update the system. The second novel aspect is a
proposed vector quantization approach that models the score
not only depending on the target speaker codebook but also
takes an alternative codebook into account. We also present an
approach to compute the alternative codebook. Simulation results
show that the proposed system outperforms a comparable system
without the proposed online learning strategy and shows benefits,
especially for short training lengths.

Index Terms—speaker diarization, vector quantization, online
learning

I. INTRODUCTION

Speaker diarization systems aim to determine from an
audio recording the instances at which a speaker or multiple
speakers were active. The application of speaker diariza-
tion includes, e.g., recorded conversations in the context of
broadcast news, phone conversations, or business meetings.
Traditionally, speaker diarization systems are built as offline
systems which have access to the complete audio file. This
enables the diarization system to segment the entire audio file
and assign labels to speakers. From the audio file, speaker
representations are extracted, such as binary key vector [1],
i-vector [2], d-vector [3] or x-vector [4]. Recently, research
has explored the usage of end-to-end neural diarization, where
a single neural network processes the audio file directly and
assigns the speaker labels [5],[6]. However, in some appli-
cations, the system needs to generate the speaker labels in
real-time or with a small amount of delay (i.e., online). This
requirement makes an offline system and its corresponding
techniques unusable. For example, offline speaker diarization
systems can process multiple times over the same data and
iteratively split and merge over all the segments since all
segments are known in advance [7]. In contrast, online speaker
diarization systems have to make all decisions using previous
and current input data. Traditionally, this is addressed by
the usage of generic models as in [8],[9]. Possible generic

models are the universal background model (UBM), Gender
Background Models (GBM) or a set of sample speaker models
(SSM) [9]. However, these approaches assume that no data
or speaker models of the speakers are available a priori.
Therefore, unsupervised approaches try to assign the audio
segments to speakers without having seen any enrollment data
that contains label information [10], [11]. In this paper, we
focus on semi-supervised approaches which assume that a
small amount of enrollment data for each speaker is available
at the beginning of a conversation. This assumption is reason-
able, e.g. in the context of business meetings, as participants
introduce themselves at the beginning of the meeting. While
the enrollment data is labeled, the subsequent segments need to
be processed in an unsupervised manner. During processing,
the semi-supervised system is not only required to assign a
label to a given speech segment, but it also needs to evaluate
whether to use the assigned speech segment for further training
of the speaker model. As we will discuss in the next section,
simply using all assigned speech segments for further learning
is problematic, because learning from falsely labeled segments
might even degrade the speaker models. This observation
motivated our novel approach that is introduced in Section III.
An evaluation is given in Section IV, while conclusions are
drawn in Section V.

II. SEMI-SUPERVISED ONLINE SPEAKER DIARIZATION

In the sequel, we give a brief overview of semi-supervised
approaches and discuss why using all segments for online
learning is problematic.

A. General Overview

In general, semi-supervised online learning speaker diariza-
tion systems perform two tasks. The first is to label each
segment of the audio file with the ID of the corresponding
speaker. As it is assumed that all participants enroll themselves
at the beginning of the conversation, the segment labeling boils
down to a closed set speaker recognition task [10].

While the first task can be addressed by supervised learn-
ing approaches, the second one is unsupervised, since semi-
supervised approaches perform online learning during the pro-
cessed conversation without any reference label information.
As the conversation goes on, the system needs to update
and enhance the enrolled speaker models, since – as shown
later – the short enrollment data of only a few seconds is
not sufficient to yield accurate models. In the context of this
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paper, it is also assumed that no further information other than
from a single microphone can be used. Hence, no direction of
arrival information or visual information, e.g., from a camera
is available. Recently the authors in, [10] introduced a speaker
diariaztion system that uses all incoming audio segments to
update their model. In the next section, we shed light on
situations where such an approach is not favorable.

B. Always Learning Approach

The authors in [10] present an online speaker diarization
system for meetings that utilizes incremental maximum a-
posteriori (MAP) adaptation. During the processing, non-
speech segments are removed while the remaining speech
segments are divided into sub-segments of a fixed duration
Ts. The diarization task is then applied to all sub-segments.
For each sub-segment, one of the M speakers is assigned
according to

ŝj = arg max
l∈1,..,M

K∑
k=1

L(ok | sl) (1)

where sl donates the model of speaker l, ok is the k-th
speech feature vector in the sub-segment with K speech
feature vectors and L(ok|sl) is the log-likelihood of the feature
vector ok given the speaker model sl, with l ∈ 1, ...,M . The
speaker j with the highest log-likelihood is then selected as
the corresponding speaker for the segment. Subsequently, the
speaker model sj is updated using the segment and assigned
label.

In [10], the authors present two approaches to train the
speaker model. One is a sequential MAP adaptation and the
other one is an incremental MAP adaptation. In both cases,
the learning strategy remains always to use every labeled
segment to update the speaker model. This strategy, however,
has the risk of degrading model performance since an error
in the labeling will result in training the speaker model with
data from a wrong speaker. This problem is not as severe
for a well-performing model, but as we will show in our
simulations, it has a significant impact on a model with
poor initial performance. Ironically, the online training of a
speaker diarization system is particularly of interest when the
initial performance is not as good as desired. To address this
challenge, we propose a novel semi-supervised online speaker
diarization system that ignores certain audio segments to avoid
performance degradation.

III. SELECTIVE SEMI-SUPERVISED ONLINE LEARNING

Figure 1 provides an overview of our proposed system.
Similar to [10], the system consists of two main steps, which
are first to label the segment with a speaker ID, and second, to
learn the speaker models. The first step is conducted similarly
as in [10]. However, the second step differs in our proposed
system. In [10], the authors proposed an incremental MAP
adaptation to update the speaker model for semi-supervised
online speaker diarization. The underlying learning strategy
of [10] is to use each classified segment to update the corre-
sponding speaker model. In what follows, this will be referred

to as the always learning strategy. In contrast, we propose
a different learning strategy, which evaluates each segment
before it decides whether to use the segment for learning or
not. The proposed system has two main novel components.
One is the overall learning strategy and the other one is a novel
vector quantization (VQ) modulation that we use to evaluate
segments. To process a segment, the proposed system takes
as input the currently examined segment of the conversation.
Each segment is processed using a voice activity detection
(VAD) algorithm. The next step is to compute the LLR score of
each speaker and the VQ score of each speaker. The used VQ
score is computed using a novel method. This novel method
is described further in Section III. Based on the LLR score,
the diarization task, which is to select the recognized speaker,
is carried out. This is done according to Eq. (1), which selects
the speaker with the highest LLR. Parallel to this, also the
learning decision is evaluated using the LLR and VQ scores.
Depending on the result of the learning decision, the speaker
model of the corresponding speaker is updated.

Fig. 1: System overview of the proposed system for the un-
supervised online learning for semi-supervised online speaker
diariazation
A. Selective Learning Strategy

In classical VQ, the Euclidean distance between a codebook
and feature vectors is computed. A smaller score, in general,
indicates a match between the codebook and hence the speaker
and the speech feature vectors under test [12]. The range of
the classical VQ score is always greater or equal to zero,
and higher values indicate a mismatch between the underlying
codebook and the examined feature vectors. There are several
approaches to generate the codebook of the target speaker, for
example, the usage of the K-means [13] or the Linde-Buzo-
Gray (LBG) clustering [14] algorithms. In our novel approach,
the proposed variant of the VQ is computed by additionally
using an alternative codebook. In our modified VQ approach,
the score is modeled as the difference between the Euclidean
distance of the alternative codebook and the Euclidean distance
of the target codebook. With this modeling, the VQ score can
take positive as well as negative values. A high positive value
indicates that the feature vectors belong to the target speaker,
while a negative value indicates that the feature vectors do not
belong to the target speaker or at least that they are not very
characteristic for this speaker.
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B. Alternative Codebook Construction

In this subsection, the derivation and the construction of the
alternative codebook are described. To generate the alternative
codebook inspired by [15], we design a novel procedure that
is based on the idea of minimizing a cost function. Optimally,
the objective would be similar to:

min
CVQalt

N−1∑
n=0

(
CVQalt(on)− CVQTarget(on)

)2
,

where CVQTarget(on) is the vector quantization of the target
speaker codebook of the feature vector on and CVQalt(on) is
the vector quantization of the alternative speaker codebook of
the feature vector on. The target speaker codebook is assumed
as given and the goal (i.e. optimization target) is to find an
optimal alternative speaker representation. When computing
the vector quantization noise from the codebook, the entry that
exhibits the smallest distance is selected. The other codebook
entries are not considered. For solving such an optimization
problem which requires selecting a codebook entry with the
smallest Euclidean distance, there currently exists no efficient
method. To avoid the occurrence of the minimum, we, there-
fore, reformulate the problem. First, we eliminate the selection
of the entry with the minimum Euclidean distance by replacing
the vector quantization of a codebook with

M∑
m=1

e−α(on−cm)⊤(on−cm).

where cm represents the codebook entry m of the alterna-
tive speaker and α is a tuning factor. The idea behind this
formulation is to reduce the influence of the entries that do
not match the feature vector. Ideally, only the entry which
matches the feature vector will influence the sum. Using this
expression, we model a similar value as the vector quantization
of the alternative speaker codebook but have a mathematical
description that we can still optimize. The vector quantization
of the target speaker codebook is modeled with ãn = e−αan ,
where an = CVQTarget(on) is the target speaker codebook
vector quantization value of the vector on. As the target
codebook and the feature vectors on are given, ãn is fixed.
Using this, we can formulate the optimization task as follows:

min
cm

N−1∑
n=0

(
ãn −

M∑
m=1

e−α(on−cm)⊤(on−cm)

)2

.

The advantage of this formulation is that we can compute the
derivative of the expression and optimize the variable cm to
obtain the alternative speaker codebook. The next step is to
take the derivative with respect to cm, which results in

∂

∂cm

N−1∑
n=0

(
ãn −

M∑
m=1

e−α(on−cm)⊤(on−cm)

)2

=

N−1∑
n=0

2

(
ãn −

M∑
m=1

e−α(on−cm)⊤(on−cm)

)
(
e−α(on−cm)⊤(on−cm) (2α(on − cm))

)
.

The left bracket in the sum is a scalar and can be interpreted
as a weight that describes how well we quantize the vector
on with respect to the target codebook. If the target codebook
has a low quantization noise for the feature vector, but the
alternative codebook has a high quantization noise this feature
vector will have a higher weight. If the target codebook
has a high quantization noise value and also the alternative
codebook, this feature vector will have a lower weight. Hence,
this scalar can be interpreted as a weight for the feature vector.
The weight is low if the alternative codebook has a similar
quantization noise value as the target speaker codebook. On
the other hand, the weight is high if the two codebooks have
a high quantization noise value difference, resulting in an
emphasis on adapting towards this feature vector. The right
bracket of the sum is a vector and can be interpreted as the
direction in which we should adapt. Overall, we have obtained
a formulation that can be used as an update coefficient for the
codebook entry.
In [15], the authors compute the codebook in an iterative
fashion, which updates each codebook entry using a gradient.
We also use this approach to compute the codebook. Each
codebook entry is updated with:

cm(t+ 1) = cm(t) + ηqm(t)

where η is the step-width, t the iteration index and qm(t) is

qm(t) =
∑N−1

n=0 2
(
ãn −

∑M
m=1 e

−α(on−cm(t))⊤(on−cm(t))
)

(
e−α(on−cm(t))⊤(on−cm(t)) (2α(on − cm(t)))

)
C. Example

In this section, we will show a simple example to illustrate
the advantage of the introduced novel VQ. For this, we
processed a conversation file from the LibreCSS dataset [16].
For one speaker, we computed the LLR scores of the speech
in the conversation and the VQ score for the classical VQ
approach and the proposed modification. In Figure 2a, we
show the result of the LLR scores and the classical VQ scores.
The green marker corresponds to the target speaker and the
red marker corresponds to the other participants in the conver-
sation. The scores of LLR and the proposed modified VQ are
provided in Figure 2b. Again, the green marker corresponds
to the target speaker and the red marker corresponds to the
other participants in the conversation. We see that in both
figures a higher LLR score corresponds to the target speaker,
but some data points belonging to the other participants have
a high LLR. If we now try to take the classical VQ into
consideration, we see in Figure 2a that a low VQ score occurs
for a lot of data points of the other participants. Hence, taking
the classical VQ score is not beneficial to detect the target
speaker with a low error rate. In contrast, we see in Figure
2b that a high VQ score occurs only for a few data points
of the other participants and is beneficial to detect the target
speaker with a low error rate. To quantify the overlap between
the other participants (red) and the target speaker (green), we
can compute the Bhattacharyya coefficient [17] on a 25× 25
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grid. For Figure 2a we get a value of 0.4358 and for Figure 2b
a value of 0.3630, which shows that the novel VQ approaches
has smaller overlap. Hence, our proposed approach can be
applied to identify more distinguishing segments of the target
speaker more reliably.
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(a) Example classical VQ and LLR score
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(b) Example proposed modified VQ and LLR score

Fig. 2: Example plot of classical VQ and LLR scores (a) and
the proposed modified VQ and LLR scores (b). The red marker
represents the other speaker in the conversation and the green
marker represents the target speaker

IV. SIMULATIONS

This section describes the used simulation setup and
presents the obtained simulation results for the semi-
supervised online speaker diarization. The evaluation aims to
show the effect of the different learning strategies and the
influence of the amount of available enrollment data.

A. Setup

The speaker diarization is performed using a conventional
GMM model as a universal background model system (UBM).
To build the UBM, the voxcelb dataset [18] was used. The
UBM is trained using the Expectation-Maximization (EM) al-
gorithm with 64 Gaussian components. All the speaker models
are derived from the UBM by using the MAP adaptation with
the relevance factor set to the value 16, which is a common
choice in the literature [19]. From the speech signals, we
always extract a feature vector composed of 12 Mel-frequency
cepstral coefficients (MFCC) and 12 delta Mel-frequency

cepstral coefficients (delta MFCC). Thereby we use a window
length of 32ms and a frameshift of 15ms for the feature
vector extraction. The speaker diarization task experiments are
performed on the LibriSpeechCCS dataset [16]. This dataset
is derived from the LibriSpeech dataset [20] by playing utter-
ances via loudspeakers to simulate conversation and capturing
the audio signal using a far-field microphone. The conversation
consists of eight different speakers. In this setup, it is possible
to accurately document when which speaker spoke and control
the amount of overlap in the conversation. As this work is
an initial discussion of online learning, we only selected the
conversation with zero speaker overlap. In [16], there are two
subsets with zero overlap, one generated with short-utterance
silence which we will refer to as the 0S subset. The other
subset is generated with longer inter-utterance silence and we
will refer to it as the 0L subset. To initialize each speaker,
we extract the amount of training data from the conversation
file and cut the selected segment out of the conversation. This
segment is randomly drawn from the conversation for each
speaker. Further, the experiments are repeated ten times, each
time drawing the segments randomly. While this is not optimal,
it enables us to decrease the influence of the initialization
segment on the performance and more objectively examine
the effect of the learning strategy.

B. Results

The results of the sub dataset 0L are shown in Figure 3a.
Here, the y-axis represents the average diarization error rate
(DER), while the x-axis represents the initialization training
data length. The average DER is computed by averaging over
the DER value of each simulation run and file in the data set.
The DER is computed with:

DER = (FA + Miss + SpkConf)/(File length),

where FA is the false alarm, Miss is the missed detection of
speech, and SpkConf is the wrong assignment of the speaker
label. In general, we see that, as expected, with increasing
length, the performance improves for all three strategies. The
always learning strategy, for all the data lengths, exhibits the
worst performance and is always outperformed by the diariza-
tion without any online learning. This shows that the approach
of learning each classified segment is not advantageous in this
setting, but rather degrades the performance. The proposed
learning strategy outperforms the other two learning strate-
gies for all the data lengths. In particular, for three seconds
of initialization training data length, our approach shows a
performance improvement of more than 10% compared to the
always learning strategy.

The results of the sub-dataset 0S are shown in Figure 3b.
Similarly to the sub-dataset 0L, the performance improves
for all three strategies with increasing length. And, generally
speaking, compared to the 0S sub-dataset, the overall perfor-
mance improves. Further, we observe that with an increasing
data length the always online learning strategy is able to
outperform the speaker diarization without any learning. The
proposed online learning strategy outperforms the other two
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approaches and, again, we observe that the performance im-
provement obtained using the proposed approach is especially
high for short training lengths. Overall the simulation results
show the advantage of the proposed learning strategy.
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(a) Simulation results for the 0L sub-dataset
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(b) Simulation results for the 0S sub-dataset

Fig. 3: Simulation results for sub-dataset 0S (a) and 0L (b) for
the three different learning strategies. The x-axis represents the
initialization training data length in seconds, while the y-axis
represents the average detection error rate

V. CONCLUSION & SUMMARY

We proposed an unsupervised online learning system for
semi-supervised online speaker diarization. The presented ap-
proach is characterized by its low complexity and, thus would
enable a low latency. The proposed unsupervised learning
strategy can improve the speaker model despite initial perfor-
mance shortcomings. We showed that a learning strategy that
uses each classified segment for learning can deteriorate the
performance. This deterioration occurs especially when the ini-
tial performance is weak. In contrast, the proposed algorithm
can outperform the always learning strategy on average and is
robust against performance deterioration. The presented work
serves to show a new concept of online learning for speaker
diarization systems. The goal of online learning is to further
improve the performance of the diarization system and reduce
the amount of necessary enrollment data. Further, we presented
a novel modification of the VQ which allows a different
interpretation of VQ scores. The novel VQ models the score
as the difference between target and alternative model results.

To model the alternative model in VQ, we proposed a new
approach that computes an alternative codebook.
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