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Abstract—Image restoration is a low-level vision task which is
to restore degraded images to noise-free images. With the success
of deep neural networks, the convolutional neural networks
surpass the traditional restoration methods and become the main-
stream in the computer vision area. To advance the performance
of denoising algorithms, we propose a blind real image denoising
network (SRMNet) by employing a hierarchical architecture
improved from U-Net. Specifically, we use a selective kernel
with residual block on the hierarchical structure called M-Net to
enrich the multi-scale semantic information. Furthermore, our
SRMNet has competitive performance results on two synthetic
and two real-world noisy datasets in terms of quantitative metrics
and visual quality. The source code and pretrained model are
available at https://github.com/FanChiMao/SRMNet.

Index Terms—Image denoising, selective kernel, residual block,
hierarchical architecture, M-Net

I. INTRODUCTION

Image denoising is a challenging ill-posed problem which
also plays an important role in the pre-process of high-
level vision task. In general, a corrupted image Y could be
represented as:

Y = D(X) + n, (1)

where X is a clean image, D(·) denotes the degradation
function and n means the additive noise. Traditional model-
based denoising methods, such as block-matching and 3D
filtering (BM3D) [1], non-local means (NLM) [2] are all based
on the information of image priors. Although the conventional
prior-based methods could handle most of denoising tasks
and achieve acceptable performances, the key problems like
computationally expensive and time-consuming hamper the
efficiency of model-based methods.

In recent years, learning-based methods [3, 4, 5] surpass
traditional prior-based methods in terms of inference time and
denoising performance. The performance gain of learning-
based methods especially CNN over the others is mainly
attributed to their elaborately designed model or block. For
example, residual learning [3, 6, 7, 8, 9], dense connection
[10, 11, 12, 13, 14], residual dense block [15, 16, 17, 18],
attention mechanisms [19, 20, 21], channel attention block
[19, 22], and hierarchical architecture [23, 24, 25, 26]. How-
ever, these complex architectures cause the restoration models
to waste more computation and the improvement is only a
little.

In this paper, we try to balance between the accuracy
and computational efficiency of the model. First, we propose
the hierarchical selective residual architecture which is based
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on the residual dense block with a more efficient structure
named selective residual block (SRB). Moreover, we use the
multi-scale feature fusion with two different sampling methods
(pixel shuffle [27], bilinear) based on the proposed M-Net to
extract adequate and useful spatial feature information. For
the reconstruction process, instead of using concatenation to
fuse the feature maps with different resolutions, we adopt the
selective kernel feature fusion (SKFF) [28, 29] to efficiently
combine the features. Overall, the main contributions of this
paper can be summarized as follows:

• We propose the novel hierarchical architecture (M-Net)
to denoise for both synthesized additive white Gaussian
noise (AWGN) and real-world noise.

• We propose the efficient feature extraction block called
selective residual block which is improved from the
residual dense block for image super-resolution.

• We experiment on two synthetic image datasets and
two real-world noisy datasets to demonstrate that our
proposed model achieves the state-of-the-art in image
denoising quantitatively and qualitatively even with less
computational complexity.

The rest of this paper is organized as follows. In Section
II, we are going to introduce the related works on image
denoising and some techniques applied at our proposed model.
Then we will describe the proposed SRMNet model in Section
III. In Section IV, we will report the visual quality [30, 31]
results and numerical comparisons between our model and
other state-of-the-art methods. In the end, we are going to
make conclusion remarks in Section V.

II. RELATED WORK

A. Image denoising

As aforementioned, traditional image denoising approaches
are generally based on image priors or algorithms which are
also called model-based methods, such as self-similarity [1, 2,
32], sparse coding [33, 34] and dictionary learning [33, 35].
Currently, CNN-based denoisers have demonstrated state-of-
the-art results [3, 6, 23, 24, 25]. Moreover, the denoise models
from [3, 4, 5, 21, 24, 25, 36] only deal with signal-independent
noise (e.g., AWGN, read noise), while the model from [22, 37,
38, 39, 40] have the ability to process the real-world signal-
dependent noise (e.g., shot noise, thermal noise).

B. Selective Kernel Network

Li et al. proposed the selective kernel convolution that has
two branches. One of the path utilizes normal naive 3 × 3
convolution kernel to extract features, and the other path
adopts different kernel size (e.g. 5×5, 7×7) to obtain the larger
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Fig. 1: Proposed Selective Residual M-Net (SRMNet) architecture. The source code and component structure of the model
could be found in the provided URL indicated in the abstract. We set the initial channel in each resolution to 96 after 3× 3
convolution, and totally we have 4 layers in the proposed M-Net.

receptive field. At the end of selective kernel convolution, they
use softmax activation function to acquire the weights for two
different features maps. Zamir et al. [29] were inspired by
[28] and applied it to multi-scale feature fusion for image
enhancement tasks, which also achieve good results.

C. Hierarchical architecture

Undoubtedly, the most representative hierarchical architec-
ture is U-Net [23] which is first proposed to be used on image
segmentation. Furthermore, due to the strong adaptive back-
bone, the U-Net can be easily applied with different extractive
blocks to enhance the performance in lots of computer vision
tasks. The hierarchical design has the advantages of learn-
ing the abundant representation with different feature sizes.
However, the down-sample and up-sample in the encoder and
decoder easily destroy the spatial information. The loss of
pixel-localization has a big influence on pixel-wise vision tasks
like instance segmentation and image restoration. Therefore, it
is important to have trade-off between contextual information
and spatial details.

III. PROPOSED METHOD

In this section, we mainly introduce the proposed Selective
Residual M-Net (SRMNet), and provide detailed explanations
for each component of the model in the following subsections.

A. M-Net

The M-Net architecture is first proposed for medical image
segmentation [41]. Adiga et al. [42] used the same framework
for fingerprint image denoising and also got good results.
Compared with above two models, our proposed SRMNet has
two improvements: 1) More diversity and plentiful multi-scale
cascading features. The original M-Net used 2×2 max-pooling
in both U-Net path and gatepost path, and then combined
these two features together. Our SRMNet use pixel un-shuffle
down-sampling in U-Net path and bilinear down-sampling
for gatepost path, which makes the cascading features have
more diversity. 2) Using different feature fusion methods

to summarize the information in the decoder (reconstruction
process). Actually, original M-Net has high-dimensional cas-
cading features, especially the shallow layer in the model,
which makes the M-Net have large number of parameters
and high computational complexity. Therefore, they use some
techniques such as batch normalization, reducing the size of
input images and the dimension of input feature maps. In
other words, the original M-Net is inappropriate to be directly
applied to image denoising. To solve this problem, we use the
selective kernel feature fusion (SKFF) method [29] which does
not concatenate each feature map but aggregates the weighting
features.

B. SRMNet

The proposed SRMNet for image denoising is shown in
Fig. 1. We first use 3× 3 weight sharing convolution in each
resolution of corrupted input image acquired by doing the
bilinear down-sampling from original-resolution input. Each
layer has the proposed selective residual block (SRB) to extract
high-level semantic information (more structure details will
be illustrated in the next subsection). Then, we choose pixel
unshuffled method as our down-sampling module at the end
of SRB to obtain multi-scale feature maps. After that, the
feature maps are concatenated with previous shallow features
from bilinear down-sampling and keep going as normal U-Net
process. The main purpose of choosing two different down-
sample methods (pixel unshuffled and bilinear) is to make the
cascaded features have more semantic information. Finally,
using the SKFF (upper part of Fig. 2) to integrate features
with different scales to reconstruct the denoised image.

We optimize our SRMNet end-to-end with the Charbonnier
loss [43] for image denoising as follows:

Lchar =

√
||X̂ −X||2 + ε2, (2)

where X̂,X ∈ RB×C×H×W means the denoised and ground-
truth images, respectively. B is the batch size of training data,
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C is the number of feature channels, H and W are the size of
images. The constant ε in Eq.(2) are empirically set to 10−3.

Fig. 2: Illustration of the Selective Residual Block (SRB).

C. Selective Residual Block
Fig. 2 shows the architecture of the proposed SRB which

is improved from the residual dense block (RDB) [15]. In
the framework of SRB, each residual block has two input
features (fr, fm ∈ RC×H×W in Fig. 2) which denote the
residual feature and mainstream feature, respectively. These
two features will do the SKFF by multiplying the correspond-
ing feature descriptor vectors (v1, v2 ∈ RC×1×1 which are
generated from channel-wise statistics s ∈ RC×1×1) to get the
weighted features (f̂r, f̂m ∈ RC×1×1). Finally, we aggregate
two channel-weighted features f̂r, f̂m together to acquire the
output feature fo of single residual block. After a few residual
blocks (e.g., 3), we use a 3× 3 convolution and add the long
skip connection with 1× 1 convolution between the input and
output.

Fig. 3: Resizing module with pixel (un)shuffle.

D. Resizing Module
As for resizing module, we simply use bilinear down-

sampling for input images Y ∈ R3×H×W (Y is the same
as Eq. (1)), and use pixel unshuffled module shown in Fig. 3
for shallow features ∈ RC×H×W after 3×3 convolution. Note
that the size of the feature channel (C) before entering the
resizing module is the same as output channel size but with
smaller resolution (e.g. W/2×H/2).

It should be noticed that the the feature map of lower layer
contains both bilinear and pixel unshuffled features but the
ingredients of bilinear features are obvious less than pixel
unshuffled features. It may cause the unbalanced problem.
In fact, the above unbalanced feature map will be passed
through the SRB which could solve the unbalanced problem
by increasing the weight of bilinear features.

IV. EXPERIMENTS

A. Experiment Setup

Implementation Details. Our SRMNet is an end-to-end model
and trained from scratch. The experiments conducted in this
paper are implemented by PyTorch 1.8.0 with single NVIDIA
GTX 1080Ti GPU.
Evaluation Metrics. For the quantitative comparisons, we
consider the most commonly used objective evaluation indices
[44, 45]: Peak Signal-to-Noise Ratio (PSNR) and Structure
Similarity (SSIM).

B. Experiment Datasets

Real-World Image Denoising. To train our SRMNet for
real-world denoising, we follow [29, 46] to use 320 high-
resolution images of SIDD dataset [47]. Evaluations also
follow aforementioned methods, which is to perform the test
on 1280 validation patches from the SIDD dataset [47] and
1000 patches from the DND benchmark dataset [48]. The
resolution of all patches is 256 × 256 in both training and
testing.

TABLE I: Real-world image denoising. Image denoising re-
sult on SIDD [47] and DND [48] datasets. ∗ denotes the
method used additional training data. The proposed SRMNet
is only trained on the SIDD images and then tested on DND.

Methods SIDD [47] DND [48]
PSNR SSIM PSNR SSIM

DnCNN [3] 23.66 0.583 32.43 0.790
BM3D [1] 25.65 0.685 34.51 0.851
CBDNet∗ [37] 30.78 0.801 38.06 0.942
RIDNet∗ [38] 38.71 0.951 39.26 0.953
DAGL [49] 38.94 0.953 39.77 0.956
AINDNet∗ [50] 38.95 0.952 39.37 0.951
VDN [39] 39.28 0.956 39.39 0.952
DeamNet∗ [51] 39.35 0.955 39.63 0.953
SADNet∗ [40] 39.46 0.957 39.59 0.952
CycleISP∗ [22] 39.52 0.957 39.56 0.956
DANet+∗ [52] 39.47 0.957 39.58 0.955
MPRNet [46] 39.71 0.958 39.80 0.954
MIRNet [29] 39.72 0.959 39.88 0.956

SRMNet (Ours) 39.72 0.959 39.44 0.951

Gaussian Color Image Denoising. For Gaussian denoising,
we use the same experimental setup as image denoising
[24, 25] and train our model on image super-resolution DIV2K
[55] dataset which has 800 and 100 high-quality (the average
resolution is about 1920 × 1080) images for training and
validation, respectively. We randomly crop 100 patches with
size 256 × 256 for each training image and randomly add
AWGN to the patches with noise level from σ = 5 to 50.
Evaluation is conducted on noise levels 10, 30, 50 on CBSD68
[53] and Kodak24 [54]. It should be noted that our model does
not know the noise level in the testing, which means SRMNet
is the blind denoising model.

C. Image Denoising Performance

Real-World Image Denoising. For real image denoising, we
evaluate the performance of 13 image denoising approaches
on real-world noise datasets (SIDD and DND) in Table I.
Compared to the previous state-of-the-art CNN-based method
[29] in SIDD dataset, our model gains the same scores with
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TABLE II: Gaussian color image denoising. Image denoising results on CBSD68 dataset [53] and Kodak24 dataset [54]. The
best and second best scores are highlighted and underlined, respectively. All of scores are the average values of the whole
dataset. The last column shows floating-point operations per second (FLOPs) which is conducted on 256× 256 color images.

Methods
CBSD68 [53] Kodak24 [54]

FLOPsσ = 10 σ = 30 σ = 50 σ = 10 σ = 30 σ = 50
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

BM3D [1] 35.89 0.951 29.71 0.843 27.36 0.763 33.32 0.943 27.75 0.773 25.60 0.686 -
IrCNN [5] 36.06 0.953 30.22 0.861 27.86 0.789 36.70 0.945 31.24 0.858 28.92 0.794 27G
FFDNet [4] 36.14 0.954 30.31 0.860 27.96 0.788 36.80 0.946 31.39 0.860 29.10 0.795 18G
DnCNN [3] 36.12 0.951 30.32 0.861 27.92 0.788 36.58 0.945 31.28 0.858 28.94 0.792 36G
DHDN [24] 36.05 0.953 30.12 0.858 27.71 0.787 37.30 0.951 31.98 0.874 29.72 0.817 1019G
RNAN [21] 36.43 - 30.63 - 26.83 - 37.24 - 31.86 - 29.58 - -
DIDN [36] 36.48 0.957 30.71 0.870 28.35 0.804 37.32 0.950 31.97 0.872 29.72 0.816 1121G
RDN [15] 36.47 - 30.67 - 28.31 - 37.31 - 31.94 - 29.66 - 1490G
RDUNet [25] 36.48 0.951 30.72 0.872 28.38 0.807 37.29 0.951 31.97 0.874 29.72 0.818 807G

SRMNet (Ours) 36.46 0.961 30.72 0.878 28.38 0.814 37.29 0.957 31.97 0.882 29.72 0.826 285G

15.26/0.414
Noisy Image

15.26/0.414
Noisy Patch

PSNR/SSIM
Ground-truth

27.59/0.840
DnCNN [3]

28.18/0.850
DHDN [24]

28.25/0.858
DIDN [36]

28.31/0.866
RDUNet [25]

28.39/0.874
SRMNet (Ours)

18.25/0.239
Noisy Image

PSNR/SSIM
Ground-truth

25.75/0.833
BM3D [1]

20.76/0.261
DnCNN [3]

28.84/0.0.858
CBDNet [37]

35.57/0.934
RIDNet [38]

36.75/0.950
CycleISP [22]

36.86/0.952
SRMNet (Ours)

Fig. 4: Visual comparisons of image denoising on the CBSD68 [53] (upper row) and SIDD [47] (bottom row) datasets for
color Gaussian and real image denoising, respectively. Due to the page limits, more visual results for different datasets could
be found in our github page.

MIRNet but less computational complexity (e.g., FLOPs) and
time cost. More specifically, Table III shows our SRMNet
only use 36.3% of MIRNet’s FLOPs and about three times
faster than MIRNet. Fig. 4 also displays the visual results
for real image denoising on SIDD. Our SRMNet effectively
removes noise and the denoised images are visually closer to
the ground-truth.

Gaussian Color Image Denoising. In Table II and Fig. 4,
we compare our SRMNet with the prior-based method (e.g.,
BM3D [1]), CNN-based methods (e.g., DnCNN [3], IrCNN
[5], FFDNet [4]) and the models which are based on RDB
(e.g., DHDN [24], DIDN [36], RDN [15], RDUNet [25]).
According to Table II, we could observe three things: 1) The
proposed SRMNet achieves state-of-the-art quantitative scores,
especially for the difficult Gaussian noise levels (e.g., 30, 50).
2) Compared to RDB-based methods (DHDN, DIDN, RDN,
RDUNet), our SRMNet has the least FLOPs (↓ 20%) among
the five models, and still keeps the best scores because of
the efficient SRB design. 3) The SSIM scores of the SRMNet
are the best in both CBSD68 and Kodak24 datasets for each
noise level, which means that our denoised images are more
perceptually faithful. We think it is attributed to the M-Net
design which could gain more spatial details in the training
process.

TABLE III: Comparison of the PSNR and FLOPs for MIRNet
[29], MPRNet [46] and our method (SRMNet). We did the test
on SIDD validation set which has 1,280 patches where FLOPs
are estimated on the input with shape of 1 × 3 × 256 × 256.
The inference times are measured on the computer equipped
with NVIDIA GTX 1080Ti GPU.

Methods PSNR FLOPs (G) Time (ms) Speedup

MIRNet [29] 39.72 787.04 100% 212.94 1×
MPRNet [46] 39.71 573.88 72.9% 128.77 1.65×
SRMNet (Ours) 39.72 285.36 36.3% 71.29 2.98×

V. CONCLUSION

In this paper, we present the SRMNet architecture and
achieve state-of-the-art performances on image denoising. The
M-Net design has the advantage of enriching features with
different resolutions by concatenating the results after pixel
unshuffle and bilinear down-sampling. Moreover, we proposed
the SRB, which is an efficient block compared with the RDB.
Our future works are going to focus on different restoration
tasks such as image deblurring and image deraining. In ad-
dition, we will also consider to combine the recent global
feature extraction blocks (e.g., Transformer, MLP-Mixer) with
our proposed modified M-Net to achieve better performances.
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