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Abstract—In this paper, we address the problem of multi-
modal image super-resolution (MISR), which aims at improving
the resolution of the target modality with the help of high
resolution guidance image of another modality. A novel joint
coupled deep transform learning framework (JCDTL) based
on deep transform learning is proposed which combines the
information from multiple modalities for achieving MISR. The
formulation and the requisite solution steps are provided. Two
publicly available datasets RGB/NIR and RGB/Multispectral are
considered for performance evaluation. The proposed approach
shows a considerable improvement in performance compared
to the state-of-art techniques. Further, an average PSNR im-
provement of close to 2dB and 1.5dB on RGB/Multispectral
and RGB/NIR datasets respectively is observed by increasing
the number of layers from one to three.

Index Terms—Multi-modal image super-resolution, Transform
Learning, joint optimization, Deep Transform Learning.

I. INTRODUCTION

Multi-modal imaging systems provide enriched information
and hence are often employed in several applications such as
remote sensing [1] [2], seed viability studies [3], environment
monitoring [4], food processing [5], medical field [6] and
forensic studies [7]. While they provide several benefits, these
multi-modal systems will have different resolutions due to
design complexity and/or limitations posed by physical con-
straints. For instance, in a RGB–hyperspectral imaging system
that is commonly used in remote sensing, the RGB will have
a better spatial resolution and poorer spectral resolution, and
vice-versa for the hyperspectral imaging system. The necessity
to thus enhance the resolution is not only essential but may
also be required in several downstream applications. Unlike the
uni-modal imaging system, the multi-modal imaging system
can exploit the cross-modal information between different
modalities to enhance the resolution in a better way.

Multi-modal Image Super-Resolution (MISR) aims to en-
hance resolution by leveraging cross-modal information. The
idea here is to enhance the resolution of a Low Resolution
(LR) imaging modality (target modality) with the help of
another Higher Resolution (HR) modality (guidance modality)
as they share some common features like edges, textures, etc.
The interest in MISR has grown recently, and the techniques
available in literature can broadly be classified into: i) Classical
signal/image processing based techniques and ii) Data-driven
techniques. The papers [8]-[10], belong to the first category,
where joint image-based filtering techniques are employed by
constructing joint filters taking into account certain features

like edges and textures from the guidance modality. However,
as shown in [11] these techniques fail when disparity between
the target and guidance modality exists. On the other hand,
in the data-driven techniques, the cross-modal information is
learned from training samples. The popular Deep Learning
(DL) based approaches employing CNNs have been used for
MISR in [12]-[14]. However, they require huge amount of
training data for better reconstruction, and may not perform
well for limited training data scenario, as also observed in[11].

The work in [11] proposed a dictionary learning based
approach where separate and common dictionaries are learnt
for different modalities with the assumption that the common
dictionary shares the same sparse representation. In [15],
by modeling the cross-modal dependencies as a weighted
superposition of individual sparse dictionary coefficients, they
presented a Joint Multi-modal Dictionary Learning (JMDL)
approach for MISR. Transform Learning (TL) [16] which is
the analysis counterpart of dictionary learning, is gaining a lot
of prominence these days due to their computational advantage
and lesser sparsification error. Driven by the advantages of
TL, very recently in [17], along similar lines as JMDL, Joint
Coupled Transform Learning (JCTL) was presented by the
authors of this paper, which showed better reconstruction
performance compared to other techniques.

In this paper, motivated by the advantages of TL and perfor-
mance of JCTL [17] for MISR, we propose a deeper version of
JCTL referred to as Joint Coupled Deep Transform Learning
(JCDTL). Unlike JCTL, where only 1-layer of Transform
is employed for both the guidance and target modality, in
JCDTL, deeper layers of TL, i.e., Deep Transform Learning
(DTL) [18] is employed at both the guidance and target modal-
ity. The TL coefficients of the target HR modality are modeled
as the weighted superposition of the sparse DTL coefficients
of the target LR modality and the guidance HR modality. A
novel JCDTL optimization framework is provided, relating the
various deep transforms, their corresponding coefficients, and
the superposition weights.

The results obtained with two publicly available datasets,
namely, RGB/NIR [19] and RGB/Multispectral [20], demon-
strates the improved performance of the proposed JCDTL
method compared to the stat-of-the-art methods. Further, by
increasing the number of layers from 1 to 3, a PSNR improve-
ment of around 1.5dB and 2dB is observed for RGB/NIR and
RGB/Multispectral data, respectively.
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Fig. 1: Block Diagram of JCDTL Framework for MISR

The rest of the paper is organized as follows. Section II
presents a brief background on TL and DTL for the sake
of completeness. Section III presents the proposed JCDTL
formulation with the requisite solution steps. This is followed
by Section IV that presents the numerical results and finally,
Section V concludes the paper.

II. BACKGROUND ON TRANSFORM LEARNING

This section presents a brief background on Transform
Learning (TL) [21] and its deep version, DTL [18] that will be
employed in our proposed MISR formulation. Given an input
A ∈ RF×M where F is the number of features and M the
number of measurements, the TL is expressed as: TA = Z
where, T ∈ RK×F is the transform with K atoms and Z
∈ RK×M are the associated coefficients [16]. The modified
learning formulation that enforces sparsity on Z is given as
[22]:

min
T,Z

∥TA− Z∥2F + λ(∥T∥2F − log detT) + γ(∥Z∥0) (1)

where the constraint (∥T∥2F − log detT) is added to prevent
trivial solution and also to control the condition number of
the learnt transform T. The optimization problem in (1) is
non convex with respect to T and Z jointly, hence, variable
splitting and ADMM technique is employed to solve for T
and Z [23]. T is updated by solving the following:

min
T

∥TA− Z∥2F + λ(∥T∥2F − log detT) (2)
The closed-form update for T is obtained using Cholesky
decomposition given as: AAT + λI = LLT , where L is a lower
triangular matrix and LT denotes the conjugate transpose of
L. Subsequently, SVD on L†AZT = QSRT , where, † denotes
pseudo-inverse, the diagonal entries of S are the singular
values and Q, R are the left and right singular vectors of
(L†AZT ) respectively. This results in the following update
for T [24]:

T = 0.5R(S+ (S2 + 2λI)1/2)QTL† (3)
The coefficients Z update is:

min
Z

∥TA− Z∥2F + γ(∥Z∥0) (4)

Z = (abs(TA) ≥ γ).TA (5)

where the term TA is hard thresholded against a certain
threshold γ and ’.’ denotes the element-wise product.

The basic transform learning formulation in (1) can be made
deep by cascading multiple transforms together to generate the
coefficients. The joint optimization formulation for learning a
n-layer DTL network is given as [18]:

min
Ti

′s,Zn

∥∥Tn(ϕ(T(n−1)(..ϕ(T1A))))− Zn

∥∥2
F

+ λ

n∑
i=1

(∥Ti∥2F −log detTi)
(6)

where ϕ is the activation function, Ti
′s are the deep transforms

for i = 1, .., n and Zn is the coefficient of the nth-layer.
Here, the coefficients of the 1st layer are fed as input to the
2nd transform layer and so on till the nth transform layer to
obtain Zn. As shown in [18], DTL architectures can learn rich
representation from the data and hence can better model the
complex data compared to shallow version. Thus, we have
employed a DTL-based framework for MISR in our proposed
formulation.

III. JOINT COUPLED DEEP TRANSFORM LEARNING
(JCDTL) FRAMEWORK FOR MISR

The block diagram of the proposed JCDTL framework for
MISR is shown in Fig. 1. Let A represent the HR image
of guidance modality and B and C represent the LR and HR
image of target modality, respectively. n-layer deep transforms
are learnt from A and B while a single transform is learnt
from C. Since the different modalities capture the same scene
of interest, their representations (transform coefficients) are
related to each other. This relationship is mathematically
expressed as: ZC = WAZAn + WBZBn where WA, WB

are the unknown weight matrices, ZC is the representation
for C and ZAn, ZBn are the nth layer DTL coefficients
learnt from A and B respectively. The JCDTL optimization
formulation is given as:

min
TAi

′s,TBi
′s,TC,WA,

WB,ZAi
′s,ZBi

′s,ZC

∥∥TAn(TA(n−1)(..(TA1A)))− ZAn

∥∥2
F
+

∥∥TBn(TB(n−1)(..(TB1B)))− ZBn

∥∥2
F
+ ∥TCC− ZC∥2F +

λA

n∑
i=1

(∥TAi∥2F −log detTAi)+λB

n∑
i=1

(∥TBi∥2F −log detTBi)

+λC(∥TC∥2F −log detTC)+µ∥ZC−WAZAn−WBZBn∥2F
+ γ(∥ZAn∥1 + ∥ZBn∥1 + ∥ZC∥1)

(7)
s.t. TA(n−1) (..(TA1A)) ≥ 0,.., TA1A ≥ 0,
TB(n−1)(..(TB1B)) ≥ 0,.., TB1B ≥ 0.

Here for i = 1, ..n, {TAi,TBi} are the deep transforms and
{ZAi,ZBi} are their associated coefficients that are learnt
from A and B. TC is the single transform that is learnt from
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C to generate the ZC. Sparsity is enforced on coefficients
ZAn, ZBn and ZC using the l1- norm constraint. Here, λA,
λB , λC , µ and γ are the tunable hyperparameters and a ReLU
type non-linearity is considered between the deep layers by
forcing the negative values of the coefficients to 0.

In the rest of the section, without loss of generality, we pro-
vide the solution steps of the above optimization formulation
by assuming n = 3. One can derive the solution by following
similar steps for any general n. The joint formulation of (7)
for n = 3 i.e. the 3-layer deep network can be expressed as:

min
TA1,TA2,TA3,TB1,TB2,TB3,TC,WA,

WB,ZA1,ZA2,ZA3,ZB1,ZB2,ZB3,ZC

(∥TA3ZA2 − ZA3∥2F +

∥TA2ZA1−ZA2∥2F +∥TA1A−ZA1∥2F)+(∥TB3ZB2−ZB3∥2F
+∥TB2ZB1−ZB2∥2F +∥TB1B−ZB1∥2F )+∥TCC− ZC∥2F

+λA

3∑
i=1

(∥TAi∥2F −log detTAi)+λB

3∑
i=1

(∥TBi∥2F −log detTBi)

+λC(∥TC∥2F −log detTC)+µ∥ZC−WAZA3−WBZB3∥2F
+γ(∥ZA3∥1 + ∥ZB3∥1 + ∥ZC∥1)

(8)
s.t.TA2(TA1A)≥0, TA1A≥0, TB2(TB1B)≥0, TB1B≥0.

Here, {A,B,C} ∈ RF×M represent the vectorized 2D
image patches of length M with F features (pixels).
In our case, the transforms and the weight matrices,
{TA1,TA2,TA3,TB1,TB2,TB3,TC,WA,WB}∈ RF×F

and coefficients {ZA1,ZA2,ZA3,ZB1,ZB2,ZB3,ZC} ∈
RF×M . This method involves a training phase where the
transforms are learned for the different modalities. Later, they
are utilized to generate the HR image of the target modality
during the test phase.

Training Phase: In this phase, we employ ADMM based
variable splitting approach to compute the closed-form updates
for the transforms, corresponding coefficients and weight
matrices. The sub-problems to solve for updating the deep
transforms for the modality A are given as:

min
TA1

∥TA1A− ZA1∥2F + λA(∥TA1∥2F − log detTA1) (9)

min
TA2

∥TA2ZA1−ZA2∥2F +λA(∥TA2∥2F− log detTA2) (10)

min
TA3

∥TA3ZA2−ZA3∥2F +λA(∥TA3∥2F−log detTA3). (11)

In the similar way, the sub-problems to solve for updating the
deep transforms for modality B can be obtained by replacing
A with B in the above (9) - (11). Now, the sub-problem to
solve for the transform TC is given as:

min
TC

∥TCC− ZC∥2F +λC(∥TC∥2F −log detTC). (12)

Notice that (9) - (12) resembles (2) and hence the closed form
expressions similar to (3) for updating the transforms can be
obtained as described in Sec. II.

The coefficients ZA1,ZA2 for modality A are computed
by solving the sub-problems given below.

min
ZA1

∥TA2ZA1 − ZA2∥2F + ∥TA1A− ZA1∥2F (13)

subject to ZA1 ≥ 0.

min
ZA2

∥TA3ZA2 − ZA3∥2F + ∥TA2ZA1 − ZA2∥2F (14)

subject to ZA2 ≥ 0.
The closed-form solutions for ZA1,ZA2 are obtained by
taking a derivative of the sub-problems with respect to the
argument variable and equating it to 0. This results in the
following updates:

ZA1=max(0, (I+TA2
TTA2)

†
.(TA2

TZA2+TA1A)) (15)

ZA2=max(0,(I+TA3
TTA3)

†
.(TA3

TZA3+TA2ZA1)) (16)

where max(.) is a greedy approach considered for ReLU
type non-linearity for the deep layers. Similarly, the updates
for the coefficient ZB1,ZB2 for modality B can be obtained
by replacing A with B in (15 and 16). The coefficients of the
last layer i.e., n = 3 in this case is estimated by solving the
following:

min
ZA3

∥TA3ZA2 − ZA3∥2F + γ ∥ZA3∥1

+µ(∥ZC −WAZA3 −WBZB3∥2F ).
(17)

Due to the l1-norm constraint on ZA3, basic matrix manipu-
lation and soft thresholding is used similar to the work in [17]
to obtain the closed form update:

ZA3 = sign(XA).max(0, |XA| −YA) (18)

where XA = D†.(µWA
T (ZC −WBZB3) + TA3ZA2),

YA = D†.(γ2J) and D = I + µWA
TWA, J is an all ones

matrix. In the similar way, the coefficients ZB3 associated
with modality B are updated with the following closed-form
update:

ZB3 = sign(XB).max(0, |XB| −YB) (19)

where XB = E†.(µWB
T (ZC − WAZA3) + TB3ZB2),

YB = E†.(γ2J) and E = I + µWB
TWB.

The sub-problem and the associated closed form solution
for ZC is given as:

min
ZC

∥TCC− ZC∥2F + γ ∥ZC∥1

+ µ(∥ZC −WAZA3 −WBZB3∥2F )
(20)

ZC = sign(XC).max(0, |XC| −YC) (21)

where XC = 1
(1+µ) .(µ(WAZA3 +WBZB3) + TCC) and

YC = γ
2(1+µ) .

The weight matrices, WA and WB are updated by solving
the following sub-problems:

min
WA

∥ZC −WAZA3 −WBZB3∥2F (22)

min
WB

∥ZC −WAZA3 −WBZB3∥2F . (23)

The closed form updates for WA and WB is obtained using
simple least squares given as:

WA = (ZC −WBZB3)ZA3
† (24)

WB = (ZC −WAZA3)ZB3
† (25)

The transforms and coefficients update go through many
iterations until convergence is met. This completes the training
phase.

Test Phase: In this phase, the learnt transforms for the
different modalities and the weight matrices are utilized to
compute the coefficients for the test data Atest and Btest later
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TABLE I: RGB/NIR dataset and RGB/Multispectral dataset evaluated by PSNR (dB) and SSIM for 16× and 4× upscaling factor respectively. The highest value are highlighted
using bold and the second highest value is underlined.

RGB/NIR Dataset (16× Upsampling) RGB/Multispectral Dataset (4× Upsampling)
Indoor 4 Indoor 5 Indoor 11 Indoor 16 Indoor21 Imge6 Imge7 Imgf5 Imgf7 Imgh3

Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Proposed JCDTL (3-layer) 29.062 0.916 30.104 0.938 28.579 0.898 32.261 0.935 28.016 0.896 31.441 0.841 35.496 0.899 37.522 0.947 33.339 0.888 39.403 0.948
JCTL 28.003 0.895 28.822 0.934 27.086 0.883 29.708 0.925 26.783 0.874 28.793 0.814 32.669 0.889 36.277 0.939 31.964 0.864 37.140 0.941
CDL 26.858 0.902 27.784 0.915 26.332 0.830 29.663 0.891 26.112 0.850 31.049 0.835 33.222 0.877 34.239 0.906 31.401 0.878 36.107 0.920
DL 25.998 0.848 26.994 0.878 26.010 0.838 29.558 0.860 25.212 0.830 20.968 0.828 26.732 0.938 32.588 0.824 23.851 0.902 30.788 0.924
JR 23.465 0.862 26.407 0.949 23.137 0.828 23.793 0.872 22.066 0.809 26.519 0.814 32.781 0.889 33.933 0.890 29.295 0.804 33.999 0.922
GF 24.779 0.890 24.654 0.876 23.868 0.745 28.715 0.892 23.661 0.780 25.332 0.774 29.709 0.869 31.706 0.901 28.045 0.880 33.518 0.807
JBF 23.710 0.853 25.422 0.889 24.185 0.805 28.395 0.896 23.605 0.814 25.535 0.746 29.655 0.799 32.411 0.886 28.874 0.839 34.461 0.902

Fig. 2: Visual comparison for RGB/NIR for Indoor16. The top row describes the error map and the bottom row has the reconstructed image for different methods

Fig. 3: Visual comparison for RGB/Multispectral of 640nm band for Imge7. The top row describes the error map and the bottom row has the reconstructed image for different
methods

estimate Ctest. The test coefficients of the first two layers for
modality A are computed as: Ztest

A1 = TA1A
test and

Ztest
A2 = TA2 Ztest

A1 . Similarly, the test coefficients of the first
two layers for modality B are given as: Ztest

B1 = TB1 B and
Ztest

B2 = TB2 Ztest
B1 . For the update of Ztest

A3 and Ztest
B3 the

following sub-problems need to be solved:

min
Ztest

A3

∥TA3Z
test
A2 − Ztest

A3 ∥2F + γ
∥∥Ztest

A3

∥∥
1 (26)

min
Ztest

B3

∥TB3Z
test
B2 − Ztest

B3 ∥2F + γ
∥∥Ztest

B3

∥∥
1
. (27)

These are standard expression for LASSO based optimization
problems [25] for which the closed form update is given as:

Ztest
A3 = sign(TA3Z

test
A2 ).max(0, |TA3Z

test
A2 | − γ

2
) (28)

Ztest
B3 = sign(TB3Z

test
B2 ).max(0, |TB3Z

test
B2 | − γ

2
). (29)

Subsequently, Ztest
C and reconstructed image Ctest is com-

puted as: Ztest
C = WAZA3+WBZB3 and Ctest=T†

C Ztest
C .

IV. RESULTS AND DISCUSSIONS

The performance of the proposed method is evaluated on
two different multimodal datasets; namely, RGB-Multispectral
dataset [20] and RGB-NIR dataset [19]. The RGB image is
considered as the guidance modality in both datasets, and the
Multispectral/NIR image as the target modality. For the RGB-
Multispectral dataset, the image data at 640 nm is considered.

The results of the proposed approach are compared against six
state-of-the-art MISR techniques based on different methods
namely, dictionary learning (CDL [11]), deep learning (DL
[12]), guided image filtering (GF [9]), joint bilateral filtering
(JBF [8]), joint image restoration (JR [10]) and the shallow
variant of the proposed technique (JCTL [17]). Structural
Similarity Index (SSIM) and Peak Signal to Noise Ratio
(PSNR) metrics are evaluated to estimate the reconstruction
quality of the HR image of the target modality.

The two datasets considered here contain the HR images
of both the guidance (A) and target modalities (C). Similar
to [11], the LR image of target modality (B) for both the
datasets, is generated by downsampling C by a required factor
and then applying bicubic interpolation on the downsampled
image and upscaling by the same factor. For comparison with
other techniques, the RGB/Multispectral data is downsampled
by 4×, whereas the RGB/NIR dataset is downsampled by 16×
like in [17]. The RGB image used as guidance modality is
converted to grayscale. Each image is truncated into patches
of size 16×16 and then converted into a vectorized patch. In
the training phase, patches of A, B, and C are chosen to learn
model parameters. The hyperparameters λA,λB ,λC , µ and γ
were chosen using grid search.

The PSNR and SSIM reconstruction results obtained with
both datasets namely RGB/NIR and RGB/Multispectral are
tabulated in Table 1 for 5 test images. It can be observed
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that the proposed JCDTL method with 3-layers performs best
in terms of PSNR and for most cases in terms of SSIM
on both datasets compared to other methods. One can also
observe a considerable improvement close to 3dB (for e.g.,
see the results for imge 6 and imge 7) in some cases with
the proposed JCDTL compared to JCTL. The hyperparameters
used for the proposed 3-layer JCDTL method for RGB/NIR
dataset are λA=λB=λC=2.8, µ=2.1e-4 and γ=4e-3, while for
RGB/Multispectral, they are λA=λB=λC=4.4, µ=1e-4 and
γ=4e-4. For visual comparison, Fig. 2 and Fig. 3 presents
the reconstructed image obtained with different techniques
on the test image on both datasets. The bottom row shows
the reconstructed image, while the top row provides the
corresponding error map. A considerable improvement in the
error map with the proposed JCDTL approach can be noticed
from these figures compared to other approaches.

Next, we provide the results to illustrate the effect of
increase in the layers. Fig. 4 shows the plot of PSNR vs. the
number of layers for both the image datasets (averaged over
the five test images). Observe from the plot that a noticeable
improvement can be seen by increasing the layers from 1 to 3,
however the improvement seems to diminish beyond layer 3.
This plot reflects the law of diminishing returns and hence in
our work we considered a 3-layer JCDTL for target image
reconstruction. Also, notice from the graph that compared
to the shallow version (JCTL), the 3-layer JCDTL gave an
average PSNR improvement of around 1.5dB and 2dB for
RGB/NIR and RGB/Multispectral data, respectively.

1 2 3 4
Layers

28

30

32

34

PS
NR RGB/NIR

RGB/Multispectral

Fig. 4: PSNR performance of JCDTL with different layers on both datasets

V. CONCLUSION

In this paper, we have introduced a novel DTL based ap-
proach referred as JCDTL for MISR. The generic n-layer deep
optimization formulation for JCDTL method which exploits
the cross-modal dependencies is provided, and the requisite
closed-form updates are provided. Results obtained with two
publicly available RGB/NIR and RGB/multi-spectral datasets,
demonstrate the improved reconstruction performance of the
proposed JCDTL compared to state-of-the-art methods. In
future, we plan to explore the hybrid deep transform and
deep dictionary learning based frameworks to obtain richer
representation for improved performance.
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