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Abstract—The spatial enhancement of Hyperspectral Imagery
(HSI) is a popular research area among the community of image
processing in general and remote sensing in particular. HSI
contribute to a wide variety of industrial applications, such as
Land Cover Land Use. The characterstic that distinguishes HSI
from other type of images is the ability to uniquely describe
objects with spectral signatures. This can be achieved due to
the sensor’s ability to capture reflectance in narrowly spaced
wavelength bands, which yields an HSI cube with hundreds of
bands. However, this ability compromises the spatial resolution
of HSI, which must be improved for practicality and usability.
There are several studies in the literature related to HSI Super
Resolution (HSI-SR), especially using Convolutional Neural Net-
works (CNNs). Nonetheless, the investigation of the most suitable
loss functions to train these networks is necessary and remains
as an area to investigate. This paper conducts a comparative
study of the most widely used loss functions and their effect on
one of the state-of-the-art HSI-SR CNNs, mainly 3D-SRCNN.
The paper also proposes a hybrid loss function based on the
comparative results, and proves its superiority against other
loss functions in terms of Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measurement (SSIM), and Spectral
Angle Mapper (SAM).

Index Terms—Hyperspectral, Super Resolution, CNN, 3D SR-
CNN, Loss Function

I. INTRODUCTION

Remote sensing applications are nowadays being integrated
with various industrial fields, such as agriculture and urban
planning. With the abundance and recent revolution of Image
Processing (IP) and Artificial Intelligence (AI) tools, this
integration has been occurring more rapidly and seamlessly.
This is due to the fact that IP tasks, such as object detection
and semantic segmentation, are now being achieved with
minimal human intervention. Nonetheless, the effectiveness
of IP and AI tool relies on the quality of the data. Remote
sensing imagery can be categorized depending on its resolution
into Hyperspectral Imagery (HSI), and Multispectral Imagery
(MSI). This categorization was imposed by the natural trade-
off in sensors, which limits their capability to capture either
high spectral resolution, yielding HSI, or high spatial reso-
lution, yielding MSI. Therefore, enhancing HSI spatially and
MSI spectrally are topics of interest in the field of remote
sensing. The former is the main theme of this paper.

Spatial enhancement of HSI can be categorized into Fusion
and Single Image Super Resolution (SISR). Fusion methods

require the availability of auxiliary information and assumes
that MSI and HSI of the same scene are captured with precise
georeferencing accuracy, which renders it impractical in sce-
narios were such requirement cannot be fulfilled. Therefore,
this paper focuses on SISR, which does not require supple-
mentary information. Bicubic interpolation [1] was one of the
early methods utilized for image SISR generally, followed by
enhanced versions of it and other interpolation methods. Then,
machine learning methodologies were popularly used along
with sparse representation and dictionary learning approaches
with prior assumptions [2]. Convolutional Neural Networks
(CNNs) revolutionized the field of IP generally and SISR
particularly. Several state-of-the-art networks were developed
that prevail over interpolation methods and traditional machine
learning approaches [3]–[8]. It has been established by various
studies that 2D CNNs achieve acceptable performance on
MSI, but fall short when applied to HSI [9]. This is due to
their inability to capture spectral signature; a powerful trait of
HSI that eases the recognition and classification of objects. It
is important to enhance HSI while preserving their spectral
fidelity, which can be achieved by 3D CNNs due to their
ability to successfully capture spectral context. There are many
studies in the literature that utilize 3D CNNs for this purpose
[9]–[14]. However, the studies do not investigate the effect of
loss functions on the performance of the CNN. Deep Neural
Networks (DCNNs), have known problems in training, such
as reaching false (local) minimum and overfitting [15]. Thus,
the choice of loss function is crucial for reaching optimum
results. This paper deals with the analysis and comparisons
of the most commonly used and state-of-the-art loss functions
in SISR to gauge the effectiveness of each one. The ultimate
goal of the paper is to establish the most suitable loss function
for HSI-SR, and to lay the groundwork for the future work of
proposing a new loss function. The studied loss functions are
Mean Squared Error (MSE), Mean Absolute Error (MAE),
Mean Squared Logarithmic Error (MSLE), Log Hyperbolic
Cosine (LHC), Huber, Charbonier, Cosine Similarity (CS),
and a proposed hybrid loss function. The network chosen
to perform this study is 3D-SRCNN, which was previously
proposed in [14] and has proven efficiency against other state-
of-the-art approaches. The datasets used in this study are
Pavia University [16] and Botswana [16], and the evaluation
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Fig. 1. Pavia University HSI cube.

is performed based on Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM) [17], and Spectral Angle
Mapper (SAM), which are the most frequently used evaluation
metrics for HSI. PSNR and SSIM measure the spatial similar-
ity between the Ground Truth (GT) image and the estimated
(enhanced) one, while SAM measures the similarity between
the spectra of the GT image and that of the estimated one.

The rest of the paper is organized as follows: Section II
describes the loss functions to be studied and the experimental
setup, Section III illustrates and analyzes the results obtained
and draws conclusions based on that, and finally, Section IV
summarizes the paper and states the future direction of this
work.

II. METHODOLOGY

A. Datasets

The first dataset studied in this paper is Pavia University. It
was captured by Reflective Optics System Imaging Spectrom-
eter (ROSIS). The size of the image is 610 × 340 with 103
bands after removing the corrupted ones. The spatial resolution
is 3.7m with spectral range of 430-960nm.

The second dataset studied in this paper is Botswana dataset,
which was captured by NASA EO-1 satellite using Hyperion
sensor. The size of the image is 1476× 256 with 145 bands.
The spatial resolution is 30m with a spectral range of 400-
2500nm.

There are pre-processing steps performed on the datasets
before experimentation. Since training neural networks re-
quires a large amount of data, the datasets are divided into
patches of 64 × 64 to increase the number of images for
training and testing. Additionally, each patch is degraded
using Gaussian blur and down-scaled by the required scale
factor using nearest neighbor [18], [19]. In this study, all the
experiments are performed on scale factor of 2. The resulting
patch is considered as the Low Resolution HSI (LR-HSI),
which will be enhanced and compared to the original GT
HSI. The details about both datasets, including the number
of training and testing patches, are summarized in Table I.

Fig. 2. Botswana HSI cube.

TABLE I
DESCRIPTION OF THE DATASETS USED IN THIS STUDY.

Dataset Sensor Spatial Resolution Bands Size Training Testing
Pavia University ROSIS 3.7m 103 610× 340 41 4

Botswana Hyperion 30m 145 1476× 256 81 11

B. Loss Functions & Experimental Setup

For a GT HSI denoted Y ∈ ZM×N×B of height M , width
N , and a number of bands B, an estimated High Resolution
HSI (HR-HSI) of the same size is denoted Ŷ ∈ ZM×N×B . A
loss function’s main objective is to calculate the residual error
R between Y and Ŷ for each band in order to mitigate this
error during the training process of the 3D-CNN, which is in
this case 3D-SRCNN. For more details about 3D-SRCNN, the
reader is referred to this paper [14]. For HSI-SR, loss functions
can be categorized into spatial and spectral. In this context,
spatial loss refers to the pixel-wise comparison between the
same band of GT HSI and the estimated HSI, while spectral
loss refers to the comparison of the spectral signature vectors
in a space with dimensionality equal to the number of bands.

1) Spatial Loss: The most straight forward and the most
widely used loss function is MSE, which measures the sum
of squared differences between every pixel at location (i, j)
of band k in Yk(i, j) and Ŷk(i, j). MSE is expressed by
Equation 1. Measuring the absolute differences instead of
square differences is the main distinction between MSE and
MAE, also known as L1, which is expressed in Equation 2.
MSLE is a variation of MSE that calculates the log error, as
seen in Equation 3. MSLE is concerned with measuring the
ratio between Y and Ŷ and, unlike MSE, does not get affected
by small differences.

R =

B∑
k=1

Yk(i, j)− Ŷk(i, j)

LMSE =
1

M ×N ×B

M∑
i=1

N∑
j=1

R(i, j)2

(1)

LMAE =
1

M ×N ×B

M∑
i=1

N∑
j=1

|R(i, j)| (2)
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LMSLE =
1

M×N×B

B∑
k=1

M∑
i=1

N∑
j=1

(
log

(
Y (i, j) + 1

Ŷ (i, j) + 1

))2

(3)

Huber [20] is a piece-wise loss function that was devised
to be resilient to outliers. It is a hybrid combination of MSE
and MAE, such that if the residual is less than or equal to a
certain threshold δ, the loss is expressed by MSE, otherwise it
is expressed by MAE, as seen in Equation 4. The challenge is
to choose an optimal δ value, as it is dependent on the dataset
inliers. The experiments in Section III will display different δ
values for each dataset used.

LHuber =
1

M×N×B

M∑
i=1

N∑
j=1


1
2
R(i, j)2, if |R(i, j)|≤δ

δ
(
R(i, j)− 1

2
δ
)
, otherwise

(4)

LHC loss was first proposed in [21], where the authors
utilized this function to improve the performance of Varia-
tional Auto-Encoders. Even though LHC is not a piece-wise
function, its performance is close to that of Huber. However,
it lacks the adaptability of Huber, as δ is fixed in LHC.
Additionally, LHC differs from MSE in the sense that it does
not get affected by the occasional large errors.

LLHC =
1

M ×N ×B

M∑
i=1

N∑
j=1

log(cosh(R(i, j))) (5)

Charbonier loss function, originally proposed in [22], is a
variant of MAE and it was adapted for HSI-SR in [23]. The
authors argue that Charbonier loss is more resilient to outliers
and provides more performance improvement over MAE.
Charbonier loss is expressed in Equation 6. The standard value
of ϵ is 10−3.

LCharbonier =

M∑
i=1

N∑
j=1

√
R(i, j)2 + ϵ2 (6)

2) Spectral Loss: All the aforementioned loss functions
measure the errors spatially. However, as explained in Section
I, HSI differ from other types of images due to their high
spectral resolution, which must be preserved while enhancing
HSI. One loss function that takes spectral resolution into
consideration is Cosine Similarity (CS), which is expressed
in Equation 7. CS measures the similarity between the GT
vector y of pixel values at position (i, j) and the estimated
vector ŷ of pixel values at the same position across all bands.

LCS = − 1

M ×N

M∑
i=1

N∑
j=1

∑B
k=1 yk(i, j)ŷk(i, j)√∑B

k=1 y(i, j)
2
√∑B

k=1 ŷ(i, j)
2

(7)

3) Hybrid Loss: Intuitively, one would argue that a hybrid
loss function that combines spatial and spectral losses is the
ideal solution to provide the best of both worlds. A hybrid
loss function is proposed based on the spatial loss that yields
the best performance combined with CS loss. The hybrid loss
function is expressed in Equation 8:

TABLE II
PAVIA UNIVERSITY RESULTS SHOW THAT THE HYBRID FUNCTION

ACHIEVES BETTER PSNR AND SSIM THAN ALL LOSS FUNCTIONS, AND
BETTER SAM THAN SPATIAL LOSS FUNCTIONS.

Loss Function PSNR (dB) SSIM SAM (◦)

MSE 32.56 0.919 4.74

MAE 32.60 0.922 4.55

MSLE 31.45 0.917 5.75

Huber (δ = 1) 32.64 0.921 4.69

LHC 32.51 0.920 4.85

Charbonier 32.66 0.921 4.50

CS 10.62 0.588 4.34

Hybrid (α =
1.5, β = 0.09)

32.73 0.923 4.45

LHybrid = αLs − βLCS , (8)

where α, β ∈ R. For this study, α and β will be set empirically
depending on the dataset used. Ls will be chosen depending
on the spatial loss function that scores the best results, which
will be revealed in Section III.

III. RESULTS AND ANALYSIS

After pre-processing the datasets as described in Section
II-A, each dataset is then used for training and testing 3D-
SRCNN with each described loss function from Section II-B.
To ensure fairness of comparison, the training parameters
are the same for every loss function trial. The training is
performed of 200 epochs with Adam as an optimization
function. Additionally, the same training and testing data are
used for every loss function.

A. Pavia University

The results of Pavia University dataset are listed in Table
II. From the spatial loss functions, the best results for Huber
loss are obtained by setting δ = 0.5, which was chosen
with systematic testing. Charbonier scored the highest PSNR,
and MAE scored the highest SSIM. The lowest scores of
PSNR and SSIM were obtained by using MSLE. Furthermore,
MSLE showed the most spectral distortions, as it resulted in
the highest SAM value. The least spectral distortions were
obtained from Charbonier, as it scored 4.34◦. The loss function
with the least spectral distortions is CS, although it shows high
spatial distortion as a trade-off, which makes it impractical as
a loss function by itself. Based on these results, Charbonier is
chosen as the best loss function. For the hybrid loss function,
with reference to Equation 8, Ls = Charbonier with α = 1.5
and β = 0.09. Those parameters were chosen empirically
based on the best observed results. The hybrid loss function
yielded higher PSNR and SSIM than all loss functions. Even
though its SAM is higher than that of CS, it is still lower than
all the spatial loss functions, which means that the hybrid loss
function successfully combines the best of both spatial and
spectral loss functions.
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TABLE III
BOTSWANA RESULTS SHOW THAT THE HYBRID FUNCTION ACHIEVES

BETTER PSNR AND SSIM THAN ALL LOSS FUNCTIONS, AND BETTER
SAM THAN SPATIAL LOSS FUNCTIONS.

Loss Function PSNR (dB) SSIM SAM (◦)

MSE 35.09 0.928 2.37

MAE 35.18 0.929 2.32

MSLE 35.07 0.928 2.35

Huber (δ = .5) 35.14 0.928 2.33

LHC 35.05 0.928 2.37

Charbonier 35.25 0.930 2.28

CS 8.87 0.649 2.20

Hybrid (α =
1.3, β = 0.08)

35.36 0.931 2.24

B. Botswana

The results of Botswana dataset are listed in Table III.
The best results for Huber loss function are obtained with
parameters δ = 0.5, similar to Pavia University. It is observed
from the table that Charbonier loss function scored the highest
PSNR and SSIM, in addition to the lowest SAM among the
spatial loss functions. Similar to the case of Pavia University,
CS showed the least spectral distortions while compromising
spatial quality, which leads to the same conclusion of its
impracticality as a loss function by itself. The hybrid loss
function, set to Ls = Charbonier with parameter values
α = 1.3 and β = 0.08, demonstrated the best PSNR and
SSIM among all functions, in addition to the lowest SAM
among the spatial loss functions.

IV. CONCLUSION

In this paper, a comparative analysis between some of the
most widely used spatial and spectral loss functions have been
discussed and compared in the context of HSI-SR. Based on
this comparison, a hybrid loss function that combines the best
of the spatial and spectral loss is proposed. The performance of
the hybrid function is compared to the formerly analyzed loss
functions. Quantitative evaluation in terms of PSNR, SSIM,
and SAM prove that the hybrid loss function is more effective
than the other loss functions. The future direction of this
research involve devising a practical way to set the parameters
α and β of the hybrid loss function rather than setting them
empirically, as they are different depending on the dataset and
finding the right parameter value can be a tedious process.
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