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Abstract—Image fusion is a technique that combines the
complementary details from the images captured from different
sensors into a single image with high perception capability. In the
fusion process, the significant details from different source images
are combined in a meaningful way. In this article, we propose
a unique and first effort of infrared and visible image fusion
technique with bi-dimensional empirical mode decomposition
(BEMD) induced VGG-16 deep neural network. The proposed
BEMD strategy is incorporated with a pre-trained VGG-16
network that can effectively handle the vagueness of infrared and
visible images and retain deep multi-layer features at different
scales on the frequency domain. A novel fusion strategy is
proposed here to analyze the spatial inter-dependency between
these features and precisely preserve the correlative information
from the source images. The minimum selection strategy is
explored in the proposed algorithm to keep the standard details
with reduced artifacts in the fused image. The competency
of the proposed algorithm is estimated using qualitative and
quantitative assessments. The efficiency of the proposed technique
is corroborated against fifteen existing state-of-the-art fusion
techniques and found to be efficient.

Index Terms—Multi-scale decomposition, Deep neural net-
work, Infrared image, Visible image

I. INTRODUCTION

Image fusion is a process that combines the correlative in-
formation from the source images and produces a fused image
with lesser artifacts. The resultant image is apparent to be
more extensive and suitable for human or machine perception.
The source images are generated from infrared (IR) and visual
sensors or a single camera with unlike imaging measures. It is
observed that the use of both IR and visible images is effective
for the vision-based system due to the complementary and
pervasive characteristics [1]. The use of fusion technologies is
successfully applied in the field of image enhancement, object
detection, object recognition, surveillance, etc. [1]. The crucial
requirement of an effective image fusion scheme is to extract
the meaningful features from the source images and fuse the
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same to produce a fused image with lesser noise. In this regard,
different fusion techniques are developed by the researchers.

In the last two decades, the popular geometrical transfor-
mation based image fusion techniques have been popularly
used and developed: Laplacian pyramid [2], contrast pyramid
[2], discrete wavelet transform [2], non-subsampled contourlet
transform [3] and curvelet transform [3] etc. These techniques
extract the features from the different source images at multi-
scale & multi-level and combine the same by using an
appropriate fusion rule. The fused image is generated based
on inverse transformation. However, these fusion schemes
are susceptible to mis-registration and are also incapable of
preserving sufficient details from the source images. Adjacent
to these fusion schemes, sparsity and dictionary learning-
based fusion schemes [3]–[5] are also applied successfully
in state-of-the-art techniques. These techniques can represent
the source images over a complete dictionary by utilizing
sparse coefficients. These sparse coefficients are amalgamate
accurately using the relevant fusion rules to produce the fused
image. However, dictionary learning-based approaches are
very much time-consuming, and the resultant images obtained
by the same have more artifacts. In recent years, several deep
learning-based image fusion algorithms [6]–[9] are getting it’s
popularity due to effective multi-scale features representation
ability. In these techniques, the deep features are extracted
from the source images at different levels and utilized to
construct the fused images. But these techniques are incapable
of making full use of deep features and face difficulties
retaining the source details efficiently.

In this paper, we have developed an effective IR, and
visible fusion algorithm based on bi-dimensional empirical
mode decomposition (BEMD) strategy persuaded VGG-16
deep neural network. The BEMD mechanism decomposes the
source images into several intrinsic mode functions (IMFs) at
different frequency bands. The proposed BEMD strategy with
VGG-16 architecture explores features in-depth on frequency
domain at various levels and can handle the high uncertainty in
the source images. The proposed deep multi-level fusion strat-
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egy constructs the weight maps to preserve the correlative data
accurately from the images of different sensors and provides a
detailed fusion map. The minimum selection strategy among
these detailed maps retains the standard information and
reduces the superfluous data. The proposed model provides
a fused image with lesser artifacts for a pair of input IR and
visible images.

The rest of the paper is organized as follows. The proposed
fusion model with graphical illustration is discussed in section
II. Section III comprises the experimental result analysis of the
proposed and existing fusion models. The conclusion of the
work is summarized in section IV.
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Fig. 1: Block diagram of the proposed algorithm.

II. THE PROPOSED FUSION ALGORITHM

In this paper, we have proposed an effective IR and visible
image fusion technique which can be further used for several
real-life applications. The source images have high uncertainty
and may possess camera noise. Therefore, it is a quite chal-
lenging task to extract the meaningful features from them and
propagate them into a fused image with reduced artifacts.
In this regard, the proposed Bi-dimensional empirical mode
decomposition (BEMD) strategy is integrated with the VGG-
16 deep learning framework that can extract multi-scale deep
features from the source images. The proposed novel fusion
strategy retains significant visual details at a multi-level to
produce a fused image with lesser artifacts. In this article, the
source images are represented as Ij , j ∈ {1, 2}, 1 corresponds
to the IR, and 2 corresponds to the visible image, and the
fused image is expressed as F . The graphical exposition of
the proposed scheme is narrated in Fig. 1. Here, the BEMD
block is combined with the VGG-16 network to preserve
the deep multi-level visual details at various scales. In the
proposed deep multi-level fusion process, the obtained features
are combined and then the minimum selection strategy is used
to produce a resultant image with complementary details and
lesser noise.

A. Bi-dimensional empirical mode decomposition

The empirical mode decomposition (EMD) [10] technique
is popularly used in the signal and image processing domain to
decomposes any signal into finite oscillatory components. It
is an adaptive algorithm and relevant for stationary as well
as non-stationary signal analysis. The extracted oscillatory
components from the signal are named as intrinsic mode
function (IMF ). It is observed that the EMD mechanism
plays an important role in one-dimensional signal analysis.
The EMD mechanism is further extended and utilized for
two-dimensional signal or image analysis and is known as bi-
dimensional empirical mode decomposition (BEMD) [11]. The
BEMD strategy extracts the IMFs from the source images
by utilizing the sifting process [11] and can be described as;

IMFn
j (x, y) = {IMF 1

j (x, y), IMF 2
j (x, y),

· · · · ·, IMFN−1
j (x, y), RN

j (x, y)};
(1)

∀n = 1, 2, · · · · ·, N − 1, N .
Here IMFn

j (x, y) indicates the IMFs for the images of
thermal and visual sensors. RN

j (x, y) denotes the residue
bands of source images.

B. The fusion of the intrinsic mode functions

We have introduced the BEMD strategy to decompose the
source images into N numbers of intrinsic mode functions
at multi-scale with different frequency bands. To retain the
maximum details in the fused image with reduced noise, it is
necessary to extract the deep features at different levels from
the IMFs and combine them accurately. Therefore, we have
proposed a unique deep multi-level fusion strategy with VGG-
16 (deep learning architecture) [12] that provides the multi-
scale and multi-level visual characteristics of the considered
scene. The considered VGG-16 architecture consists of con-
volutional layers, max-pooling layers, and a rectified linear
unit (ReLU) as an activation function with five convolutional
blocks. The convolutional layers are used to retain the spatial
information of the source images, and max-pooling layers are
used as a down-sampling operation. The presence of the ReLU
function in the network makes it faster and efficient.

In the proposed algorithm, we have used three IMFs
except residual bands of source images to extract the deep
features as shown in Fig. 1. Let us assume that the ψt,1:c

j deep
features are extracted by the VGG-16 network with tth con-
volutional block consisting of c channels, t ∈ {1, 2, 3, 4, 5}.
ψt,1:c
j (x, y) indicates the contents at position (x, y). Initially,

the corresponding IMFs from the source images are given
to the deep VGG-16 network separately to retain the deep
features. Subsequently, at each block, we have utilized the
sum of the absolute difference (SAD) operator to map from
features space to image space named as initial action map ϕtj
and can be given as;

ϕtj(x, y) = SAD(ψt,1:c
j (x, y)). (2)

To make the proposed scheme prosperous to mis-registration,
we have considered a center sliding window u× u in the ϕtj .
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A block-based average (BBA) operator in the center sliding
window is used to obtain the final action map ϕ̂tj and can be
calculated as;

ϕ̂tj(x, y) =

∑u−1
2

a=−u−1
2

∑u−1
2

b=−u−1
2

ϕtj(x+ a, y + b)

u2
. (3)

For the larger value of u, the proposed algorithm is more
prosperous to mis-registration. However, at the same time,
small-scale details may be lost, which are essential for multi-
modal image fusion. Hence, in this proposed work, we have
kept the size of the center sliding window to 3× 3.

To precisely preserve the complementary information from
the source images, we have developed an initial weight map
wt

j by using the normalization operator in the ϕ̂tj . The wt
j in

the range [0,1] can be determined as;

wt
j(x, y) =

ϕ̂tj(x, y)∑j
m=1 ϕ̂

t
m(x, y)

. (4)

As we know, the max-pooling layer with stride s = 2 in the
VGG-16 architecture reduces the size of the input feature to
1/s times. Hence, the bi-cubic interpolation is utilized in the
wt

j to generate the final weight map ŵt
j where the size of ŵt

j

same as the source image size.
The initial detail maps idmt generated from the source

images and final weight maps to retain the high strength details
and remove low strength details. Now, we have five pairs of
final weight maps, and for each pair of final weight maps, the
initial detail map can be calculated as;

idmt(x, y) =

j∑
z=1

ŵt
z(x, y)× Iz(x, y). (5)

The final detail map fdm is obtained by using maximum
selection strategy among these initial detail maps to preserve
sharp details and can be calculated as;

fdm(x, y) = max[idmt(x, y)], (6)

likewise, we acquired various final detail maps from the
corresponding IMFs.

C. Fused image generation

To generate the fused image F , we have utilized a minimum
selection strategy among these final detail maps to preserve the
standard information and reduce the redundant data. The fused
image is obtained as;

F (x, y) = min[fdmn(x, y)], (7)

where n indicates the number of IMFs pairs.

III. EXPERIMENTAL RESULTS ANALYSIS

The efficacy of the proposed algorithm is tested on all con-
sidered IR and visible image pairs of the “TNO” benchmark
database [13] with several challenging scenes: illumination
variation, smoke, occluded object, and non-uniform lighting
conditions, etc. The efficiency of the proposed scheme is vali-
dated both qualitatively and quantitatively. For page constraint,

the visual demonstrated result is shown on few source image
pairs, and quantitative analysis is shown on all the image pairs
of the “TNO” benchmark database. The proposed scheme is
run on a Core i7 system with 16 GB RAM and python pro-
gramming using Keras framework along Tensorflow backend.
The achievement of the proposed technique is evaluated by
comparing the results obtained by it against fifteen existing
state-of-the-art techniques: cross bilateral filter (CBF) [14],
weighted least square (WLS) [15], convolutional sparse rep-
resentation (CSR) [4], ratio of low-pass pyramid (RP) [3], RP
with sparse representation (RP-SR) [3], latent low-rank rep-
resentation (LatLRR) [16], morphological component analysis
based on convolutional sparsity (CS-MCA) [17], Fuzzy edge
[18], Joint SR with saliency detection (JSRSD) [5], saliency
detection (SD) [19], convolutional neural network (CNN) [20],
deep neural network (DNN) [21], Fusion based on generative
adversarial network (FGAN) [8], image fusion based on CNN
(IFCNN) [9] and residual fusion network (RFN) [22]. This
section is further split into qualitative assessment, quantitative
assessment, and ablation study.

A. Qualitative Assessment

The original images acquired from the visual and the ther-
mal sensors along with the results obtained by the proposed
and different considered state-of-the-art techniques: CBF, RP,
RP-SR, Fuzzy edge, RFN, and DNN are presented in Figs.
2. It may be observed that the resultant images procured by
the different techniques used for comparison: CBF, RP, RP-
SR, and Fuzzy edge have produced many artifacts and cannot
retain significant details in the fused image, as shown in the red
rectangle highlighted region on different image. The outcomes
of the RFN technique have blurred details with more noise.
Due to ringing artifacts around the edge details, the significant
features are not clearly visible or highlighting non-required
details in the fused image by the DNN technique. However,
the results obtained by the proposed technique have maximum
details with lesser artifacts.

B. Quantitative Assessment

The evaluation of fusion performance is difficult due to
irrelevant variation in visual demonstrated fusion results ob-
tained by different fusion schemes. Therefore, in this paper
we have used the four most suggested fusion metrics: mutual
information for the discrete cosine features (FMIdct) [23],
amount of artifacts added during the fusion process (Nabf )
[23], average structure similarity index (SSIMa) [23], and av-
erage edge preservation index (EPIa) [23]. The performance
of any fusion algorithm is better if the FMIdct, SSIMa, and
EPIa values are higher with lower Nabf value.

Table I encapsulates the average quantitative measures of
the proposed and state-of-the-art fusion schemes where the
best values are indicated in bold. From this Table, it may be
observed that the proposed scheme attained higher accuracy
against fifteen existing fusion algorithms. The fused images
acquired by the proposed algorithm strongly correlate with
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Fig. 2: Visual analysis of results on the Bench, Octec, and
Marne image (from left to right). From top to bottom: (a)
Visible images, (b ) IR images, results of (c) CBF, (d) RP, (e)
RP-SR, (f) Fuzzy edge, (g) RFN, (h) DNN and (i) Proposed
schemes, respectively.

TABLE I: Quantitative comparison with existing image fusion
algorithms for all the pairs of source images

Quantitative measurements
/Algorithms Avg.FMIdct Avg.Nabf Avg.SSIMa Avg.EPIa

CBF [14] 0.26309 0.31727 0.59957 0.57240
WLS [15] 0.33102 0.21257 0.72360 0.67837
CSR [4] 0.34640 0.01958 0.75335 0.71130
RP [3] 0.28210 0.22677 0.68424 0.64488

RP-SR [3] 0.27930 0.21444 0.67385 0.63737
LatLRR [16] 0.33817 0.01596 0.76486 0.76223

CS-MCA [17] 0.35841 0.06680 0.72964 0.69154
Fuzzy edge [18] 0.31052 0.28250 0.60635 0.66744

JSRSD [5] 0.14253 0.34657 0.54127 0.47473
SD [19] 0.27030 0.13430 0.72897 0.66774

CNN [20] 0.35269 0.13280 0.71372 0.68444
DNN [21] 0.36658 0.02324 0.70852 0.68552
FGAN [8] 0.36335 0.06706 0.65384 0.68470
IFCNN [9] 0.37378 0.17959 0.73186 0.73767
RFN [22] 0.29669 0.07288 0.69949 0.68864
Proposed 0.39962 0.00149 0.77671 0.77909

source images and contain fewer artifacts as compared to the
existing state-of-the-art techniques.

C. Ablation Study

We conduct ablation studies to see the performance of the
proposed scheme against alteration of the different components
in the proposed technique. For this study, we replaced the pro-
posed scheme for BEMD with: Proposed algorithm with two
IMFs, Proposed algorithm with three IMFs and residual
bands and Proposed algorithm with three IMFs and without
residual bands. The performance are shown In Table II. It may
be observed from this table that the proposed scheme retain
maximum information in the fused image. Similar experiment
is carried out for ablation study with: Two-stream VGG-16-
Deep multi-level fusion strategy (Without any decomposition
strategy), Laplacian decomposition [3]-Two-stream VGG-16-
Deep multi-level fusion strategy, Tikhonov optimization [24]-
Two-stream VGG-16-Deep multi-level fusion strategy, and
BEMD-Two-stream VGG-16-Deep multi-level fusion strategy.
The results are shown in Table III. It may be observed
from this table that the proposed scheme retain maximum
information. We also have studied the effects of entropy (EN)
[18] and mutual information (MI) [18] with different window
size. The studies for EN is provided in Fig. 3 and study for
MI is provided in Fig. 4. From this Figs., it may be concluded
that with the increasing values of window size u, the EN and
MI measures are reduced, which degrade the quality of the
fused image and retain fewer details from the source images.
Hence, in this proposed work, we have kept the size of the
center sliding window to 3 × 3 to get a higher values of EN
and MI.

TABLE II: Ablation study of proposed algorithm with and
without residual bands

Experiments FMIdct Nabf SSIMa EPIa
Proposed algorithm
with two IMFs

0.28366 0.00301 0.87356 0.95109

Proposed algorithm
with three IMFs and residual bands 0.28373 0.00325 0.87310 0.95150

Proposed algorithm
with three IMFs and without residual bands 0.28401 0.00316 0.87371 0.95249
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Fig. 3: Graphical illustration of entropy for different size of
center sliding window.
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Fig. 4: Graphical illustration of mutual information for differ-
ent size of center sliding window.

TABLE III: Ablation study of proposed algorithm with differ-
ent image decomposition strategy.

Evaluation measures
/Decomposition strategies FMIdct Nabf SSIMa EPIa

Two-stream VGG-16-
Deep multi-level fusion strategy

(Without any decomposition strategy)
0.38507 0.00477 0.68092 0.71582

Laplacian decomposition-
Two-stream VGG-16-

Deep multi-level fusion strategy
0.39259 0.00533 0.68016 0.71836

Tikhonov optimization-
Two-stream VGG-16-

Deep multi-level fusion strategy
0.39060 0.00512 0.68050 0.71845

BEMD-
Two-stream VGG-16-

Deep multi-level fusion strategy
0.39544 0.00445 0.68084 0.72181

IV. CONCLUSION

In this paper, we have proposed an efficient image fusion
scheme to perpetuate the correlative data from the source
images to the fused image with lesser noise. The proposed
BEMD strategy is integrated with a VGG-16 deep neural
architecture that can learn a mapping from image space
to feature space at multi-scale with different levels. The
proposed multi-level fusion strategy; investigates the spatial
inter-dependency among these features and accurately acquires
the complementary information from the source images. The
minimum selection strategy in the proposed scheme produce
the fused image with reduced artifacts. The efficacy of the
proposed technique is corroborated using qualitative and quan-
titative assessment against fifteen existing fusion schemes. It
is observed that the fused images attained by the proposed
algorithm have a strong correlation with the source images and
higher accuracy than the state-of-the-art fusion techniques.
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