
Reflection Removal Using Multiple Polarized

Images with Different Exposure Times

Takuma AIZU

Faculty of Environmental Engineering

The University of Kitakyushu

Fukuoka, Japan

c1mca002@eng.kitakyu-u.ac.jp

Ryo MATSUOKA

Faculty of Environmental Engineering

The University of Kitakyushu

Fukuoka, Japan

r-matsuoka@kitakyu-u.ac.jp

Abstract—When we take a photograph through glass windows
or doors, the foreground scene is reflected in the captured image.
The reflected components overlap with the background scene
and make object recognition and identification more difficult.
This paper proposes a novel reflection removal method using
multiple polarized images taken with different exposure times.
To achieve a high accuracy reflection removal in high dynamic
range scenes, in which photographed images have under-/over-
exposed pixels, we introduce a minimization problem of weighted
nonnegative matrix factorization (WNMF) with total variation
regularization. To solve this minimization problem, we also
introduce an alternating optimization scheme with the alternating
direction method of multipliers (AO-ADMM). The advantages
of the proposed method over some conventional methods are
demonstrated in experiments of reflection removal using real-
world images.

Index Terms—Reflection removal, polarization, nonnegative
matrix factorization, ADMM.

I. INTRODUCTION

When we take a photograph through glass windows

or doors, the foreground scene is reflected in the captured

image. The reflected components overlap with the background

scene and make object recognition and identification more

difficult. For example, the recognition accuracy of objects is

significantly decreased in in-vehicle/surveillance systems.

Let t and r ∈ R
3N be vectorized color transmission and

reflection components, respectively, where N is the number

of pixels. Let y ∈ R
3N be an observed image, we assume that

an observed image is obtained by a convex combination of the

transmission and reflection components as follows

y = αt+ βr, (1)

where α and β are positive multiplicative constants, i.e.,

blending coefficients of two components. According to this

model, the problem of estimating two unknown transmission

and reflection components from one observed image is NP-

hard. To solve this problem, many reflection removal methods

based on a priori information of a reflection component have

been proposed [1]–[9]. Li and Brown [2] proposed a single

image reflection removal method based on different relative

smoothness properties between transmission and reflection

components. Shibata et al. [5] proposed a reference-based

reflection removal method by using a pair of RGB-D images

based on the assumption that there is less reflection in the

depth map even if it is taken through the glass.

Polarized imaging is known to be useful for removing reflec-

tions, and various polarized reflection removal methods have

been introduced [1], [7], [9]. These methods assume that the

reflection is partially polarized, and the relative intensity of the

reflection can be adjusted by photographing through a linear

polarizer. Farid and Adelson [1] separated the transmission and

reflection components from multiple polarized images, which

were taken with filters of different polarization angles, by

using independent component analysis. However, this method

requires a pair of polarization images taken with filters of

polarization angles that maximize and minimize the intensity

of the reflected component, respectively. In addition, there is a

problem that the separated components have negative values.

Lei et al. [9] introduced a deep learning-based reflection

removal method. However, learning-based approaches require

a large amount of training data set obtained in a variety of

scenes. Moreover, under-/over-exposed pixels occur in high

dynamic range scenes such as backlight and low-light condi-

tions [10]–[14], and make it even more difficult to separate

reflections. These problems due to under/over-exposed pixels,

which depend on photographing scenes, are common problems

to be solved in both non-learning and learning based reflection

removal methods.

In this paper, we propose a novel reflection removal method

by using multiple polarized images with different exposure

times. To achieve reflection removal in high dynamic range

scenes, where photographed images have under-/over-exposed

pixels, we introduce a minimization problem of weighted

nonnegative matrix factorization (WNMF) with total variation

regularization. To solve the proposed problem, we also intro-

duce an alternating optimization scheme with the alternating

direction method of multipliers (AO-ADMM). Experimental

results demonstrate the effectiveness of the proposed method

compared with some conventional methods.

The paper is organized as follows. In Section II, we present

several mathematical preliminaries to introduce the proposed

method. Section III introduces a novel reflection removal

method for multiple polarized images with different exposure

times. In Section IV, several examples are shown to verify

the validity of our method. Finally, we conclude this paper in
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Section V.

II. PRELIMINARIES

A. Nonnegative matrix factorization

Nonnegative matrix factorization (NMF) [15] is a matrix

decomposition method that decomposes an observed data ma-

trix V composed of nonnegative values into two nonnegative

matrices W and H that satisfy V ≃ WH⊤. The transpose of

a vector or a matrix is defined by (·)⊤. The solution of this

decomposition problem is obtained by minimizing an objective

function D(W,H), which is the degree of the divergence

between V and WH⊤. The function D(W,H) is generally

defined by

D(W,H) =
∥

∥

∥
V −WH⊤

∥

∥

∥

2

F
, (2)

where ‖ ·‖F is the Frobenius norm. To solve the minimization

problem (2), multiplicative update algorithms, gradient descent

algorithms, and alternating least squares (ALS) algorithms are

often used.

B. Alternating Direction Method of Multipliers

Alternating direction method of multipliers (ADMM) [16]

is a proximal splitting algorithm that can treat convex opti-

mization problems of the form

min
x∈RN1 , z∈RN2

F (x) +G(z) s.t. z = Lx, (3)

where F and G are usually assumed to be a quadratic and

proximable function, respectively, and L ∈ R
N2×N1 is a

matrix with full-column rank. For any x(0) ∈ R
N1 , z(0) ∈

R
N2 ,b(0) ∈ R

N2 and γ > 0, the ADMM algorithm is given

by












x
(t+1) = argmin

x

{

F (x) +
γ

2
‖z(t) − Lx− b

(t)‖22

}

,

z
(t+1) = argmin

z

{

G(z) +
γ

2
‖z− Lx

(t+1) − b
(t)‖22

}

,

b
(t+1) = b

(t) + Lx
(t+1) − z

(t+1)
,

(4)

where the superscript (t) denotes the iteration number. The

sequence generated by (4) quickly converges to an optimal

solution of (3).

C. Total Variation

By letting Dv and Dh ∈ R
N×N be the vertical and

horizontal first-order differential operators, respectively, with

Neumann boundaries, the differential operator is expressed by

D := [D⊤
v D⊤

h ]
⊤

(

∈ R
2N×N

)

for a vectorized gray image

with N pixels, and thus the total variation (TV) is defined

as [17], [18]

‖x‖TV := ‖Dx‖1,2 =

N
∑

i=1

√

(Dvx)2i + (Dhx)2i , (5)

where (Dvx)i and (Dhx)i are the i-th element of Dvx and

Dhx, respectively.

The minimization problem with TV regularization is defined

as

x⋆ = argmin
x

‖x‖TV +
λ

2
‖x− xin‖

2
2, (6)

where xin is a vectorized input image and λ > 0 is a balancing

weight of two terms.

III. PROPOSED METHOD

A. Reflection removal model for polarization images

When an image is taken with a linear polarizer filter of

polarization angle θ, the observation model defined in (1) can

be redefined as follows1

yθ = αθt+ βθr. (7)

Furthermore, given the polarized images of the polarization

angles θ1, . . . , θM , we obtain the following M equations

yθ1 = αθ1t+ βθ1r,
...

yθM = αθM t+ βθM r.

(8)

Then, we obtain the following equation that expresses these

equations in matrix form

Y = WH⊤, (9)

where Y := [yθ1 . . . yθM ]
(

∈ R
3N×M

)

is a matrix of M
polarization images, W := [t r]

(

∈ R
3N×2

)

is a matrix that

arranges the transmission and reflection components, and

H :=

[

αθ1 · · · αθM

βθ1 · · · βθM

]⊤
(

∈ R
M×2

)

is a matrix of positive multiplicative constants, and each

column consists of the coefficients of each component.

In the case of a high dynamic range scene, images often

have under-/over-exposed pixels due to under-/over-exposure.

Since the observation model (9) is not valid for such pix-

els, we consider the use of multiple exposure images. The

observation model for the k-th exposure image Yk :=
[yθ1,k . . . yθM ,k]

(

∈ R
3N×M

)

2 is defined by

Yk = WH⊤
k := WH⊤ek, (10)

where ek is the k-th exposure time. We assume that the scale

variation of pixel values of each exposure image caused by

each exposure time does not affect the latent components,

but the multiplication coefficients. Thus, we introduce Hk :=
Hek. Each exposure image is generated by blending the same

scale transmission and reflection components W using their

multiplication matrix Hk.

B. Minimization problem

Our aim is to estimate the transmission and reflection

layer from multiple polarized images with different exposure

times. We propose a weighted nonnegative matrix factorization

problem to reduce model errors caused by under-/over-exposed

pixels, and then introduce the TV regularization to enhance the

1The dynamic range of images is normalized in [0, 1].
2Note that the multiple exposure images are linearized to the irradiance of

scenes.
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smoothness of the latent components. The proposed minimiza-

tion problem is defined by

min
W,H1,...,HK

K
∑

k=1

∥

∥Mk ◦
(

Yk −WH⊤
k

)∥

∥

2

F
+

2
∑

l=1

λl‖wl‖TV

s.t. W ∈ R
3N×2
+ , Hk ∈ R

M×2
+ ∀k, ‖wl‖∞ = 1 ∀l,

(11)

where R+ denotes the set of all nonnegative real numbers,

λl (l = 1, 2) is a balancing weight, which controls the

smoothness of each component, and the operator ◦ denotes

element-wise multiplication. The matrix Mk

(

∈ R
3N×M

)

is

a masking matrix defined by

Mk := [diag(M(yθ1,k)) . . . diag(M(yθM ,k))],

where M(·) is a masking function to avoid under-/over-

exposed pixels and defined by

M(x) :=

{

1, if ξ ≤ x ≤ ξ

ǫs, otherwise
, (12)

where ξ and ξ are lower-/upper-bound of pixel values, and ǫs
is a small value.

The first term of (11) is the sum of a fidelity term for

multiple exposure polarized images derived from (10). The

second term of (11) is the TV regularization defined in (5).

The first and second constraints are nonnegative constraints for

the matrices W and Hk, respectively. The third constraint3

is a constraint to normalize the maximum value of each

latent component, i.e., transmission and reflection components,

respectively, to 1.

C. Optimization

The proposed minimization problem (11) is nonconvex due

to the product of two objective variables W and Hk. To find

that solution, we propose an alternating optimization approach

based on ADMM. The proposed problem (11) can be separated

into two subproblems w.r.t. each of the objective variables Hk

and W with other variables fixed as follows

min
H1,...,HK

K
∑

k=1

∥

∥Mk ◦
(

Yk −WH⊤
k

)∥

∥

2

F

s.t. Hk ∈ R
M×2
+ ∀k,

(13)

min
W

K
∑

k=1

∥

∥Mk ◦
(

Yk −WH⊤
k

)
∥

∥

2

F
+

2
∑

l=1

λl‖wl‖TV

s.t. W ∈ R
3N×2
+ , ‖wl‖∞ = 1 ∀l.

(14)

Since each subproblem is convex, we can alternatively find

the optimal solution of each problem by using ADMM, called

AO-ADMM [20]–[22]. The whole algorithm is shown in

Algorithm 1.

3Nonnegative matrix factorization has the problem of scale ambiguity [15],
[19]. That is, the scales of the basis matrix W and the coefficient matrix H are
not uniquely determined. To tackle this problem, we constraint the maximum
value of w1 and w2, respectively.

Algorithm 1 Proposed AO-ADMM algorithm

1: Input : W(0),H
(0)
k

,Yk,Mk (k = 1, . . . ,K), λ1, λ2, τ = 0;

2: Output : W(τ),H
(τ)
k

(k = 1, . . . ,K);
3: while A stopping criterion is not satisfied do
4: Update Hk (k = 1, . . . ,K) by solving (13) using ADMM algorithm

with W
(τ);

5: Update W by solving (14) using the ADMM algorithm with

H
(τ+1)
k

(k = 1, . . . ,K);
6: τ = τ + 1;
7: end while

In the standard NMF algorithm, the objective variables

W and H are initialized with random nonnegative values

[15]. However, initialization with random nonnegative values

has little chance to obtain a reasonable solution, and the

convergence speed of the algorithm may also be slow. To

address this issue, we calculate an image with the minimum

value of input multiple polarized images in each pixel, in

which under-exposed pixels are avoided, and set it as the initial

value of the transmission component w1. The other variables

are initialized with random nonnegative values.

IV. EXPERIMENTS

To demonstrate the effectiveness of the proposed method,

we applied it to the real-world image data sets captured

by using FLIR BFS-U3-51S5-C4, where we used a tripod

to avoid camera shake. Note that multiple polarized images

were taken with different exposure times (K = 3), in which,

short-, middle-, and long-exposure polarized images were

obtained in each scene (see Fig. 1). We compared our method

with Farid and Adelson’s method [1], which is the polarized

image reflection removal method, and Li and Brown’s method

[2], which is the single image reflection removal method.

Both methods do not assume the use of multiple exposure

images, i.e., under-/over-exposed images. Thus, we used a

polarized high dynamic range (HDR) image obtained by

blending input multiple exposure (polarized) images using a

standard exposure blending method [10]5 as input images for

the conventional methods. Since Farid and Adelson’s method

requires two polarized images with a different polarization

angle, we choose the results of a pair of polarized HDR

images in {θ = 0◦, 45◦, 90◦, 135◦} which having the highest

quantitative evaluation values. For input images of Li and

Brown’s method, we used the averaged image of four polarized

HDR images.

For quantitative evaluation, we also obtained “Ground truth”

HDR transmission components by blending multiple polarized

images with different exposure times, which were taken by

physically removing the portable glass as in [6]. Note that the

camera parameters were fixed, i.e., these images were captured

with the same exposure times of the polarized reflection im-

ages. For the quality metrics, we used PSNR, SSIM [23], and

SI [3]6. Since the pixel scale of the reflection removal results

4This camera can capture four polarization angle RGB images in one shot.
5Note that we used Gaussian type hat-function for calculating weight maps.
6The radius of Gaussian filter used in SSIM and SI was set to 3 in order

to make the score vary depending on the presence or absence of reflections.
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θ = 0◦ θ = 45◦ θ = 90◦ θ = 135◦

Fig. 1. Example of input polarized images in Scene 1: (front to back) short-, middle-, and long-exposure images.

(a) (b) (c) (d) (e)

Fig. 2. Results of Scene 1: (a) Ground truth, (b) input scene with reflection, (c) Farid and Adelson [1], (d) Li and Brown [2], and (e) ours.

(a) (b) (c) (d) (e)

Fig. 3. Results of Scene 2: (a) Ground truth, (b) input scene with reflection, (c) Farid and Adelson [1], (d) Li and Brown [2], and (e) ours.

estimated by our method and the conventional methods are

ambiguous, we adjusted its scale so that to the same pixel scale

of the Ground truth images for fair quantitative evaluation. All

experiments were performed using MATLAB on an Ubuntu

Linux desktop computer with an AMD EPYC 7402P 2.8GHz

CPU and 128 GB RAM. To accelerate the computation time of

the proposed method, we used an NVIDIA GeForce RTX 3090

GPU. For the parameters of our method, we set ξ = 2/255,

ξ = 253/255, and ǫs = 10−1 in all experiments. Then, we

found the visually best results by adjusting λ1, where we

set λ2 = 5.0 · 10−2λ1. For the parameter setting of Li and

Brown’s method, we also found the visually best results for

fair comparison.

Figures 2 and 3 show the Ground truth images and some

closeup images in Scenes 1 and 2, respectively. One observes

from both figures that our method outperforms the conven-

tional methods. As can be seen from Fig. 2 (b), which is the

average of the polarized HDR images obtained by blending

multiple polarized images, the reflection of the characters can

be seen. In the results of Farid and Adelson’s method, we

can see that the text of the reflection component remained

and reversed its color from black to white, especially in

the first row of Fig. 2 (c). This artifact is also slightly

visible in the second row of Fig. 2 (c). In Fig. 2 (d), Li

and Brown’s method cannot remove the reflection component

having sharper edges. This is because this method assumes that

the reflection component has small edges due to out-of-focus,

and does not work well in such scenes where the reflected
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TABLE I
QUANTITATIVE COMPARISON RESULTS.

PSNR SSIM SI

Method \ Scene 1 2 3 4 1 2 3 4 1 2 3 4

Farid and Adelson [1] 21.40 27.47 25.03 22.25 0.8236 0.9051 0.8804 0.7075 0.9270 0.9549 0.9471 0.8365
Li and Brown [2] 19.87 24.00 21.36 21.10 0.8024 0.8779 0.8359 0.8430 0.9476 0.9555 0.9742 0.9245

Ours 27.28 28.58 32.38 28.32 0.9223 0.9308 0.9741 0.9271 0.9766 0.9704 0.9907 0.9609

component is also in focus.

In contrast, our method shown in Fig. 2 (e) can remove the

reflection component with higher accuracy. We see from Figs.

3 (c) and (d) that both of the conventional methods cannot

remove the reflection component, while our method shown in

Fig. 3 (e) can remove the reflection component significantly

better than the conventional method.

Table I shows the PSNR, SSIM, and SI comparison results.

One can observe from Table I that our method has the highest

value in all quantitative evaluations compared with the other

methods in all the scenes.

V. CONCLUSIONS

This paper proposed a novel reflection removal method

for multiple polarized images with different exposure times.

We introduced a weighted nonnegative matrix factorization

(WNMF) with total variation (TV) regularization, and solved

it by using an alternating optimization scheme with the alter-

nating direction method of multipliers (AO-ADMM). WNMF

reduces model errors caused by under-/over-exposed pixels,

and then the TV regularization promotes the local smoothness

of the transmission and reflection components, resulting in

highly accurate reflection removal. Experiments confirmed that

the proposed method outperforms some existing methods.

In future works, we will attempt to improve the computa-

tional efficiency of the proposed alternating optimization al-

gorithm by employing stochastic gradient descent algorithms.
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