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Degraded image Super-FAN [1] Shen et al. [2] UMSN [3] DeblurGANv2 [4] DFDNet [5] HiFaceGAN [6] NASFE (ours)

Fig. 1: Sample results on the face with multiple degradations like blur, noise and low-light conditions. Restoration methods
such as [1]–[6] fail to reconstruct a high quality clean face image. In constrast, the proposed NASFE network produces a high
quality face image.

Abstract—Various factors such as ambient lighting conditions,
noise, motion blur, etc. affect the quality of captured face images.
Poor quality face images often reduce the performance of face
analysis and recognition systems. Hence, it is important to
enhance the quality of face images collected in such conditions.
We present a multi-task face restoration network, called Network
Architecture Search for Face Enhancement (NASFE), which can
enhance poor quality face images containing multiple degrada-
tions (noise+blur+low-light). During training, NASFE uses clean
face images of a person present in the degraded image to extract
the identity information in terms of features for restoring the
image. Furthermore, the network is guided by an identity-loss
so that the identity information is maintained in the restored
image. Additionally, we propose a network architecture search-
based fusion network in NASFE which fuses the task-specific
features that are extracted using the task-specific encoders. We
introduce FFT-op and deveiling operators in the fusion network
to efficiently fuse the task-specific features. Comprehensive ex-
periments on synthetic and real images demonstrate that the
proposed method outperforms many recent state-of-the-art face
restoration and enhancement methods in terms of quantitative
and visual performance.

I. INTRODUCTION

In the era of COVID-19, the use of video communication
tools such as Zoom, Skype, Webex, MS Teams, Google Meet,
etc. has increased drastically. In many cases, images/videos
captured by these video conferencing tools are of poor quality
due to low-light ambient conditions, noise, motion artifacts,
etc. Fig. 1 shows an example of such an image taken during a
video conference. Hence, it is important to enhance the quality
of face images collected in such conditions. Furthermore,
restoration of degraded face images is an important problem in
many applications such as human-computer interaction (HCI),
biometrics, authentication, surveillance, and face recognition.

Existing face image restoration and enhancement methods
are designed to address only a single type of degradation
such as blur, noise, or low-light. However, in practice face
images might have been collected in the presence of multiple
degradations (i.e. noise + blur+ low-light). Hence, it is im-
portant to enhance the quality of face images collected in such
conditions. In this paper, we address the problem of restor-
ing a single face image degraded by multiple degradations
(noise+blur+low-light). In particular, we develop a multi-task
image restoration framework where a single network is able
to remove the effects of low-light conditions, noise, and blur
simultaneously.

The proposed multi-task face restoration problem can be
considered as a many-to-one feature mapping problem, i.e
extracting task-specific features (i.e. noisy, blur, and low-
light enhancement features) and fusing them to get features
corresponding to the clean image. The fused features can
then be used by a decoder to restore the face image. One can
clearly see the importance of fusion in this framework. Rather
than naively using Res2Blocks [7] or convolutional blocks in
the fusion network, one can learn architecture for fusion which
may lead to better restoration. To this end, we propose a neural
architecture search-based approach [8], [9] for learning the
fusion network architecture. Additionally, we introduce FFT-
op and deveiling operators in order to process the task-specific
features efficiently where these operators address image for-
mation formulation of these multiple degradations. FFT-op
is motivated by Weiner deconvolution and helps in learning
the weights to efficiently fuse the task-specific features and
remove the effect of blur from the features. Deveiling operator
is introduced to learn the weights in order to enhance low-light
conditions efficiently. Furthermore, we use a classification
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Fig. 2: An overview of the proposed NASFE face image restoration network.

network to classify the input degraded image into different
classes that give information about the degradations that are
present in the input face image. This class specific information
is used as a prior information in the fusion network for fusing
the task-specific features. Additionally, in many cases we have
access to clean images corresponding to the same person in
the degraded image. Hence we propose a novel way of using
these clean images, which may be taken in different scenarios
at different times, and extract the identity information using
VGGFace features [10] and use it as prior to network along
with degraded image. We also use these extracted VGGFace
features and propose a novel identity-loss, Liden, for training
the network. Fig. 1 shows sample results from the proposed
Network Architecture Search for Face Enhancement (NASFE)
method, where one can see that NASFE is able to provide
better restoration results as compared to the state-of-the-art
face restoration methods.

To summarize, this paper makes the following contributions:
• We propose a way of extracting the identity information

from different clean images of a person present in the
degraded image to restore the face image.

• We propose a novel loss, called identity-loss (Liden),
which uses the aforementioned identity information to
train the NASFE network.

• We propose a neural architecture search-based method for
designing the fusion network.

II. PROPOSED METHOD

An observed image y, with multiple degradations, can be
modeled as follows,

y = r � (k ∗ x) + n, (1)
where x is the clean image, r is the irradiance map, k is the
blur kernel, and n is the additive noise. Here, ∗ and � de-

note convolution and element-wise multiplication operations,
respectively. To address this multiple degradations problem,
we develop a multi-stream network called NASFE which
consists of three task-specific encoders, a fusion network, and
a decoder as shown in Fig. 2. The deblur encoder (EB(.)),
denoise encoder (EN (.)) and low-light encoder (EL(.)) are
trained to address the corresponding tasks of deblurring,
denoising, and low-light enhancement, respectively. These
encoders have different building blocks that help in addressing
their respective task as shown in Fig. 2. These encoders are
used to extract task-specific features which are then fused
using a network architecture search (NAS) based fusion block.
Finally, the fused features are passed through the decoder
network to restore the face image. Additionally, with help of
a classification network, we determine what degradations are
present in the input image, and use them as a prior information
to the task-specific encoders and the fusion network. Further-
more, to improve the quality and preserve the identity in the
restored face image, we extract identity information from a set
of clean images corresponding to the same identity present
in the degraded image in the form of VGGFace features.
We denote them as the identity information (Iiden), and pass
them as input along with the degraded image to the NASFE
network to restore the face image. Besides using this identity
information, we construct an identity loss Liden to train the
NASFE network.

A. Fusion Network

As can be seen from Fig. 2, the task-specific features are
concatenated and then fed into the fusion network. Naively
fusing these task-specific features may not be beneficial in
addressing multiple degradations. Given multiple operations
like FFT operator, Res-op, deveiling operator, Res2Block,
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and self-attention, etc., it would require significant human
efforts to come up with an architecture for the fusion
network that achieves good performance in addressing this
problem. In order to overcome this, we follow a NAS-based
approach [9], [11]–[13] for designing the fusion network.
NAS-based approaches provide an elegant way to design the
network architecture given the different operations required
for the task. Here in our Fusion Network, we define fusion
cell as the smallest repeatable module used to construct
the fusion network (see Fig. 2). In our approach, the
network search space includes both network-level search (i.e.
searching the connection between different fusion cells), and
cell level search (i.e. exploring the structure of the fusion cell).

Fusion Cell Architecture. We adopt the cell design structure
of [13] to define a fusion cell (represented as Cell(.)) as a
directed acyclic graph consisting of B blocks. In each building
block the following operators are used to create the search
space and construct the cell structure,

• Dilconv3 (dilated conv3× 3) • Selfattn (Self attenion)
• Dilconv5 (dilated conv5× 5) • Res2Block
• separable conv 3× 3 • Res-op (residual operator)
• separable conv 5× 5 • Deveiling operator
• Identity or skip connection • FFT operator
• No or zero connection

Along with the conventional convolution operators like
dilated, separable convolutions, no and skip connections,
Res2Block [7] and self-attention block [14], [15], we introduce
Res-op, deveiling, and FFT-op (shown in Fig. 3) to efficiently
process the task-specific features. These operations are based
on the image formation models regarding the individual degra-
dation like noise, blur, and low-light conditions. Note, We use
the same cell search technique introduced [8], [9], to search
and construct or learn the cell structure.

Fig. 3: (a) Residual operator, (b) FFT-operator, (c) Deveiling
operator. All the convblocks (conv1 and conv2) in these
operators are 3× 3 convolutions.

B. Identity Information

Given the degraded image y, and a set of clean images
DC = {Ci}ni=1, we compute pool3 features using the VG-
GFace network [10]. Note that DC contains clean images of
the same person present in the degraded image y. Let F y and
{FC

i }ni=1 denote the VGGFace features corresponding to y
and {Ci}ni=1, respectively. Since the clean images in DC may
have different style and characteristics as they may have been
taken in different scenarios and times, we apply Adaptive-
Instance normalization (AdaIN) before passing them as input

to the network to reduce the effect of different styles in the
images. AdaIN is applied as follows,

F̄C
i = σ(F y)

(
FC
i − µ(FC

i )

σ(FC
i )

)
+ µ(F y), (2)

where σ(.) and µ(.) denote standard deviation and mean, re-
spectively. Mean of F̄C

i is defined as the identity information,
i.e. Iiden = mean({F̄C

i }). Iiden is used along with y as input
to the NASFE network to restore the face image.

Note that as we are extracting the identity information from
the clean images, this information is much more reliable and
provides stronger prior as compared to face exemplar masks
[16] or semantic maps [1]–[3] extracted using the degraded
images. Additionally, to preserve the identity of the subject
in the restored image, we construct an identity loss Liden to
train the NASFE network.

Identity Loss Liden. Let x̂ denote the restored face image
using the NASFE network. We construct the identity loss as
follows

Liden =
1

n

n∑
i=1

arccos(〈F x̂, F C̄
i 〉), (3)

where F x̂ denotes the VGGFace features corresponding to x̂
and n denotes the number of clean images in DC .

C. Overall Loss

The NASFE network is trained using a combination of the
L2 loss, perceptual loss [17] and identity loss as follows

Lfinal = L2 + λperLper + λidenLiden (4)
where L2 = ‖x̂−x‖22, Liden denotes the identity loss defined
in (3) and Lper denotes the perceptual loss [17] defined as
follows

Lper =
1

NHW

∑
i

∑
j

∑
k

‖F x̂
i,j,k − F x

i,j,k‖. (5)

Here, F x̂, F x denote the pool3 layer features of the VGGFace
network [10] and N,H and W are the number of channels,
height and width of F x̂, respectively. We set λper = 0.04 and
λiden = 0.003 in our experiments.

Note that multiple clean images are required only during
training. Once the network is trained, a degraded image is
fed into the network and the NASFE produces an identity-
preserving restored image as the output.

III. NASFE IMPLEMENTATION DETAILS

Given x, we first convolve it with k to get a blurry image.
Here, k can be a motion blur kernel [18], [19] or an anisotropic
Gaussian blur kernel [20]. To generate a degraded image with
blur+low light+noise conditions, we follow [21], [22] and
convert the obtained blurry image to irradiance image L. We
then multiply low light factor r to L, where L = Mf−1(k∗x),
f(.) is the camera response function (CRF) function, and M(.)
represents the function that converts an RGB image to a Bayer
image. Finally, we add realistic Photon-Gaussian noise [21],
where n consists of two components: stationary noise nc with
noise variance σ2

c and signal dependent noise ns with spatially
varying noise variance σ2

s .
Training dataset. We conduct our experiments using clean im-
ages from the CelebA [23] and VGGFace2 [24] face datasets.
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Input image Histeq Super-FAN [1] Shen et al. [2] UMSN [3] DeblurGANv2 [4] DFDNet [5] HiFaceGAN [6] NASFE
Fig. 4: Qualitative comparisons using real face images multiple degradations collected from YouTube videos. output images
of Histeq are computed using Histogram equalization method.

TABLE I: PSNR|SSIM and face recognition comparisons of NASFE using Test-BNL. B: blur, N: noise, L: low-light. (Note
all methods are retrained using degraded images containing blur, noise and low-light conditions. Histeq means Histogram
equalization method)

Test-set Metrics B+N+L Histeq
Shen et al. [2]

(CVPR’18)
Super-FAN [1]

(CVPR’18)
UMSN [3]
(TIP’20)

DeblurGANv2 [4]
(ICCV’19)

DFDNet [5]
(ECCV’20)

HiFaceGAN [6]
(ACMM’20)

NASFE
w/o Iiden

NASFE
(ours)

Test-BNL
CelebA

PSNR|SSIM 8.17|0.22 12.28|0.39 19.98|0.66 19.45|0.60 21.10| 0.72 21.37|0.74 21.68|0.77 21.75|0.77 22.53|0.81 23.80|0.85
Top-1|Top-5 38.5|45.2 41.3|47.5 51.2|57.8 48.8|55.9 59.7|67.7 61.2 | 68.6 63.4|69.7 62.9|69.1 69.6|77.3 73.4|81.8

VGGFace2
PSNR|SSIM 8.39|0.25 12.84|0.41 20.46|0.68 19.83|0.64 21.28| 0.72 21.94|0.78 21.96|0.78 22.08|0.79 22.84|0.83 24.15|0.86
Top-1|Top-5 42.8|49.2 43.2|50.8 56.9|62.7 53.8|59.2 62.8| 69.9 65.3|72.4 67.8|73.7 67.2|72.9 72.1|80.4 75.9|84.2

We randomly selected 30000 images from the training set of
CelebA [23], and 30000 images from VGGFace2 [24] and
generate synthetic degraded images with multiple degrada-
tions. Images in the CelebA and VGGFace2 datasets are of
size 176 × 144 and 224 × 224, respectively. Given a clean
face image x, we first convolve it with blur kernel k sampled
from 25000 motion kernels generated using [18], [19], and 8
anisotoric Gaussian kernels [20], and then following [22], [25]
we multiply them with low light factor (r) sampled uniformly
from [0.05, 0.5] to obtain images with low-light conditions.
Finally, we add realistic noise [21] n (where σs ∈ [0.01, 0.16]
and σc ∈ [0.01, 0.06]) to obtain the degraded image y. Based
on the degradations present in y, we create class label c which
is a vector of length three, c = {b, n, l} where b, n, and l are
binary numbers, i.e b, n, and l are one if y contains blur, noise
and low-light, respectively and zero otherwise.
Test datasets. We create test datasets using randomly sam-
pled 100 test images from the test sets of CelebA [23] and
VGGFace2 [24]. Using these clean images, we create test
datasets Test-BNL with the amounts of degradations as shown
in the Table II. Additionally, we collected a real-world face
image dataset with multiple degradations corresponding to 20
subjects from YouTube.
Training Details. The NASFE network is trained using
{yi, xi, ci,Di

C}Ni=1. The classification network (CN) is trained
using {yi, ci}Ni=1. It is trained to produce a class label ĉi
which indicates degradation(s) present in yi. Note CN network
is combination of pretrained VGGFace [10] and three fully
connected layers.

NASFE contains three encoders (deblur (EB(.)), denoise
(EN (.)) and low-light (EL(.))), one fusion network (Fn(.))

TABLE II: Details of the test datasets created using
CelebA [10] and VGG-Face2 [24]. M: motion kernels [18],
Gaussian: Gaussian kernels [20]

Test set name
Degradation
type

Details about
degradation values

Number of images
CelebA VGGFace2

Test-BNL
blur + noise
+ low-light

M: 40 kernels kernel size [13, 27]

G: 12 anisotropic kernels with σb ∈ [1, 3]

r = [0.15, 0.3], σs = 0.1, σc = 0.05

10400 10400

and a decoder (De(.)) as shownn in the Fig. 2. Encoders
(EB , EN , EL) are initially trained to address the correspond-
ing individual tasks of deblurring, denoising, and low-light
enhancement, respectively. Given a degraded image y, we
compute class ĉ (using CN) and identity information Iiden
and pass them as input to NASFE to compute a restored image
x̂. We set the number of blocks B to 12 in the Fusion cell
of NASFE. NASFE is trained using Lfinal with the Adam
optimizer and batch size of 40. The learning rate is set equal
to 0.0005. NASFE is trained for one million iterations.

IV. EXPERIMENTS AND RESULTS

We compare the performance of our method on Test-BNL
which contains multiple degradations blur, noise, and low-light
conditions. Note, we retrain [1]–[6] using degraded images
that contain all degradations. Results are corresponding to this
experiment are shown in Table I. As can be seen from this
table, NASFE performs better by 2.1dB in PSNR and 0.07
in SSIM compared to the second-best performing method.
Fig. 4 shows the qualitative results of NASFE against other
methods. The outputs of other methods are blurry or contain
artifacts near the eyes, nose, and mouth. On the other hand,
NASFE produces clear and sharp face images. Furthermore,
we can observe from Fig. 4 that outputs of other methods still
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contain low-light conditions, whereas NASFE produces sharp
face images with enhanced lighting conditions.

We conducted face recognition experiments using Test-BNL,
to show the significance of various face restoration methods on
face recognition. Face recognition experiments are conducted
using ArcFace [26] on Test-BN, where Top-K similar faces
for the restored face image are picked from the gallery set
and used to compute the accuracy. Table I show the face
recognition accuracies corresponding to different methods. We
can clearly see that NASFE achieves an improvement of 7%
over the second-best performing method.
TABLE III: PSNR|SSIM comparisons for ablation study using
Test-BN, Test-BNL. Learnable parameters are in millions.

Method
Test-BN Test-BNL Learnable

ParametersCelebA VGGFace2 CelebA VGGFace2
baseline network (BN) 19.72|0.70 19.88|0.72 19.95|0.65 20.42|0.69 6.00
BN-NAS 22.51|0.74 22.62|0.75 21.17|0.70 21.47|0.74 6.25
+ classification network 23.28|0.76 23.04|0.76 21.56|0.72 21.95|0.76 6.25
+ identity informaation Iiden 24.88|0.81 24.60|0.82 23.06|0.80 23.47|0.80 6.40
NASFE (w/ Lmse and Lper ) 25.10|0.84 24.92|0.84 23.35|0.83 23.76|0.83 6.40
NASFE w/ Lfinal 25.57|0.87 25.49|0.87 23.80|0.85 24.15|0.86 6.40

V. ABLATION STUDY

We conduct ablation studies using the test-sets Test-BN,
and Test-BNL to show the improvements achieved by the
different components in NASFE. We start with the baseline
network (BN), and define it as a combination of three en-
coders (EB , EN , and EL), a fusion network (composed of 4
Res2Blocks [7]), and a decoder (De). As shown in Table III,
BN performs very poorly due to its inability in processing
task-specific features efficiently. Now, we introduce network
architecture search in the fusion network by using fusion cells
in-order to efficiently processing the task-specific features. The
use of network architecture search results in improvement of
BN-NAS by ∼ 2dB compared to BN. Then, we use class
labels c (computed using classification network) as input to
BN-NAS which increases the performance of the network
by ∼ 0.5dB. Now we use the proposed identity information
Iiden of the identity present in the degraded image (refer to
section II-B) which further improves the performance of the
network by ∼ 1.5dB. The resultant network corresponds to
NASFE. Note that BN and BN-NAS are trained using Lmse.
Now we train NASFE with Lmse and Lper which further
improves the performance by 0.3dB. Now we use the proposed
Liden to construct Lfinal and train NASFE. The proposed
Liden improves the performance of NASFE by ∼ 0.5dB.

VI. CONCLUSION

We proposed a multi-task face restoration network, called
NASFE, that can enhance poor quality face images containing
multiple degradations (noise+blur+low-light). NASFE makes
use of the clean face images of a person present in the
degraded image to extract the identity information and uses
it to train the network weights. Additionally, we use network
architecture search to design the fusion network in NASFE that
fuses the task-specific features obtained from the encoders. Ex-
tensive experiments show that the proposed method performs
significantly better than SOTA image restoration/enhancement

methods on both synthetic degraded images as well as real-
world images with multiple degradations (noise+blur+low-
light).
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