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Abstract—Object detection models require a large amount of
annotated data during training, making their deployment for
real-world tasks difficult. Few-Shot Object Detection (FSOD)
aims to solve this shortcoming by training object detection models
from limited data. However, existing methods mostly focus on
natural images such as MS COCO and Pascal VOC datasets.
In this paper, we study FSOD on aerial images. At first glance,
performance seems to decrease compared to natural images with
similar datasets (i.e. same number of images and classes). We
perform an in-depth analysis to understand the performance
discrepancies between natural and aerial images. In the light
of this analysis, we propose several improvements to boost the
detection quality on aerial images: new data augmentations for
object detection, and new support cropping strategies. These
modifications increase the mAP by approximately 5% on average.

Index Terms—Few-shot learning, Object detection, Remote
sensing images, DOTA, DIOR.

I. INTRODUCTION

Few-shot learning aims to perform a task from only a
few annotated examples. Training occurs on a set of base
classes for which sufficient data is available, but the overall
goal is to deal with novel classes with limited annotations.
Few-Shot Object Detection (FSOD) is the intersection of
few-shot learning and object detection. It aims ar detecting
objects from novel classes in images based on a small set
of examples. This is especially important for object detection
as it requires a large amount of costly annotated data to
achieve satisfactory performance. It is even worse for aerial
images which often contain a large number of small objects.
FSOD methods attempt to fill this shortcoming by detecting
new classes only from several annotated examples (e.g. from
1 to 10, also called shots). An early attempt to tackle this
problem is proposed by [1]. Since, several methods have been
introduced, but most of them are only benchmarked on natural
images datasets such as Pascal VOC [2] and MS COCO [3]. To
our knowledge, only two contributions focus on aerial images.
The first one [4], extends the feature reweighting method
proposed by [1] with multiscale features. The second one
[5] develops an adaptive attention mechanism that combines
information from the examples (also called support images)
with the query image (i.e. the image in which detection is
done). We will refer to these methods as FRW and SAA
respectively. However, these works do not provide experiments
on the same datasets, which prevents direct comparison. As a

Fig. 1: Performance comparison between Regular Baseline and Few-Shot
Baselines, FRW [4] and SAA [5] on three datasets: DOTA, DIOR and Pascal
VOC. On aerial image datasets, a large performance gap is observed on novel
classes, while this is relatively reduced on Pascal VOC (i.e.natural images).

starting point, we reimplemented both methods (denoted as
Few-Shot Baselines) and tested them on one natural image
dataset Pascal VOC and two aerial images datasets DOTA
[6] and DIOR [7]. Direct performance comparison between
different datasets is not possible, therefore, we propose to
compare the gaps between the few-shot methods and the
regular baseline. The baseline acts as a performance limit,
and the distance to this limit shows how well a few-shot
method works on a specific dataset. The results can be found in
Figure 1. On each dataset, one can observe a slight decrease in
performance for base classes, compared to the regular baseline
(i.e. without few-shot), and a larger one for novel classes.
This behavior is expected in FSOD as only small supervision
is available for novel classes, therefore it is harder to detect
objects belonging to these classes. However, the performance
drop for novel classes is larger for aerial images datasets.
We perform a thorough analysis to understand the different
behaviors on aerial and natural images.

It appears that the main difference is that objects in aerial
images are generally smaller than in natural images. It makes
the detection harder, but this is already a known fact: detection
models struggle to detect small objects. Solutions have already
been proposed to address this issue, such as Feature Pyramidal
Network [8] for instance. Here, it is different: there is a larger
performance gap between regular baseline and FS baselines
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for small objects. We hypothesize that it is harder to extract
relevant class information from small objects, and that causes
the performance decline. We provide evidence supporting this
fact and propose solutions to reduce the performance drop.

The contributions of this work are three-fold:
1) We provide a benchmark of two separate FSOD methods

on aerial images datasets DOTA and DIOR.
2) We conduct an in-depth analysis of the performance

of FSOD on multiple datasets to better understand the
performance gap between aerial and natural images.

3) In the light of this analysis, we improve both methods
(FRW and SAA) through a novel information extraction
strategy.

II. PERFORMANCE ANALYSIS ON NATURAL AND AERIAL
IMAGES

This work focuses on the performance of FSOD methods
on three distinct datasets, DOTA, DIOR and Pascal VOC.
Its purpose is to explain why these methods perform better
on natural images (i.e. on Pascal VOC). First, we conduct a
statistical analysis on the sizes of the objects in each dataset.
Then, we look at the performance of FSOD by class for each
dataset and correlate this with the dataset analysis.

A. Object size analysis

To begin with, DOTA and DIOR are constituted of aerial
images taken from several sources (e.g. Google Earth) at
various spatial resolutions, they contain respectively 16 and
20 classes. Pascal VOC is constituted of natural images and
contains objects from 20 distinct classes. Table I compares the
datasets and highlights statistics on object size. From this, it
is obvious that DOTA and DIOR contain far smaller objects
than Pascal VOC. In addition, the size variance is greater in
DOTA and DIOR (relatively to the average object size). This
is detrimental in the few-shot setting as only a small variance
can be represented by a few examples. Finally, the surface
occupied by objects in Pascal VOC is greater than in the DOTA
and DIOR. It leads to a larger object/background imbalance.

Figure 2 shows that DOTA and DIOR both have small
classes (i.e. whose median width w̄ is below 32 pixels) and
large classes (i.e. w̄ > 96 pixels). On the contrary, Pascal VOC
only has medium and large classes. Note that this separation
between small/medium/large objects comes from MS COCO
and it will be employed extensively in our analysis. This
greater size variety in DOTA and DIOR may be detrimental
as the network has to deal with both very small and very large
objects. In addition, in DOTA and DIOR most classes contain
objects of only one size (small, medium, or large), while in
Pascal VOC, most spans across two sizes. This certainly forces
the network to learn better size robustness through training.

B. Implementation details

To compare the performance of the two selected methods
FRW [4] and SAA [5], we implement (from scratch) both
of them. The main reason for this is to remove most of
the architectural and hyperparameter choices. To do so, we

# classes # instances Size (in pixels) Object
occupancyMean Std Std/Mean

DOTA 16 190k 33 37 1.12 0.13
DIOR 20 190k 42 58 1.38 0.17

Pascal VOC 20 50k 153 113 0.74 0.40

TABLE I: Object size statistics (in pixel) for DOTA, DIOR
and Pascal VOC datasets.

used a recently proposed framework [9] that allows to easily
implement a wide variety of FSOD methods. This framework
is based on FCOS [10], a one-stage, fully convolutional
object detector. Therefore, the two reimplemented methods
have the same backbone network and overall architecture.
The only difference is the attention mechanism that combines
the features from the query image and the support examples.
Hence, a fair comparison can be done. For our experiments,
we trained FRW and SAA on the three datasets presented
above, we refer to these as the few-shot baselines. In addition,
a regular FCOS is also trained on the same datasets to compare
the performance (i.e. with sufficient data for all classes). All
hyperparameters are fixed for these experiments, more details
are available in our code1. The few-shot baselines are trained
following the episodic learning scheme described by [1]. It is
separated in two phases: base learning (with base classes only)
and fine-tuning (both base and novel classes). Each phase is
constituted of multiple episodes which consist in training on
a random subset of classes. During an episode, a support set
and a query set are sampled containing annotations only for
the selected classes. The support set is used as examples by
the models to condition the detection on the query images.

C. Performance comparison on DOTA, DIOR and Pascal VOC

First, with sufficient data for all classes, FCOS performs
relatively well on all three datasets. It achieves around 0.65
mAP (with an IoU threshold of 0.5) for DOTA and Pascal
VOC while a little under 0.75 mAP for DIOR. With these close
results, one could expect a similar behavior when it comes to
the FS baselines. Figure 1 actually shows another pattern. On

1https://github.com/pierlj/aaf framework

Fig. 2: Box plot of objects size in DOTA, DIOR and Pascal VOC. On the
left side, boxes represent the overall size distribution in each dataset. On the
right side, the distributions are split by class and ordered by average size.
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Fig. 3: Performance comparison between FRW baseline (blue and red dots) and regular baseline (black stars) on three different datasets: DOTA, DIOR and
Pascal VOC. (top) Mean average performance of the two methods plotted per class against average object size. (bottom) gap between FRW baseline and
regular baseline, per class. Positive values indicate better performance than regular baseline.

the aerial datasets, the FS baselines perform slightly worse
than the regular baseline on base classes (i.e. classes with
plenty of examples) and poorly on novel classes (about 60%
lower). However, on Pascal VOC, the FS baseline is on par
with the regular one (even better for FRW) on base classes and
20% lower on novel classes. As the primary goal of FSOD is
to get a better performance on novel classes, this makes a large
difference. As mentioned in section II-A, objects’ sizes vary a
lot from one class to another, especially in DIOR and DOTA.
Therefore, it may be interesting to look at the performance
individually on each class, as depicted in Figure 3. In the top
row, the regular baseline and FRW mAP are plotted against
the average object size for each class. For FRW, these are split
into base and novel classes. From this, it can be observed that
generally, the performance increases with the class size, both
for the baseline and FRW. Then, performance on novel classes
is always under the baseline performance, which is expected
given that only a few examples are available for these classes.
The smallest base classes show worse performance than the
baseline, but for larger ones, FRW outperforms the baseline.
To better observe this pattern, the second row of Figure 3
shows the performance gap between the baseline and FRW. A
clear trend is visible, having examples available at inference is
detrimental for small classes but beneficial for the large one,
and the magnitude of this effect increases with the size of the
objects. This is also true for novel classes, but as they are more

difficult to detect, it remains under the baseline performance.
However, this trend is less visible for Pascal VOC. This is
due to the lack of small classes (especially for novel classes)
required to intensify the trend. If the plots for DOTA and
DIOR were restricted to medium and large classes the trends
would not be as strong.

To sum up, the smaller objects are harder to detect in general
and in the few-shot regime, the information extracted from
the examples is detrimental for small classes but beneficial
for larger ones. These conclusions are also true for SAA.
This highlights a poor choice about the information extraction
process in the FS baselines and a lack of robustness in the
query/support feature aggregation.

Base classes Novel classes

Mean Small Medium Large Mean Small Medium Large

Default 0.237 0.099 0.261 0.254 0.132 0.034 0.132 0.178
No padding 0.243 0.074 0.281 0.240 0.136 0.034 0.115 0.245
Same size 0.238 0.085 0.271 0.241 0.153 0.030 0.168 0.300
Multi scale 0.231 0.088 0.260 0.272 0.145 0.039 0.131 0.255
Reflection 0.247 0.086 0.282 0.253 0.128 0.048 0.139 0.246
Mixed 0.247 0.079 0.281 0.247 0.142 0.030 0.124 0.285

TABLE II: Comparison of support extraction strategies on base
and novel classes with DOTA dataset and FRW method with
10 shots. The performance is measured as in [3], i.e. mAP
is computed with multiple IoU thresholds and separately on
objects of different sizes small (S), medium (M) and large (L).
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III. BRIDGING FEW-SHOT PERFORMANCE GAP ON AERIAL
IMAGES

A. Improved support feature extraction

As demonstrated in section II-C few-shot performance in
detection is closely related to the size of the classes of interest.
In particular, the use of examples degrades the quality of
detection for small objects. This suggests that the information
extracted from the support misguide the model. In our two FS
baselines, the support object is cropped out of the example
image and zero-padded to fill a 128×128 patch (denoted ex-
traction method). This patch is then processed by the backbone
network to extract relevant features at multiple scales. Objects
larger than 128 pixels are resized to fit in the patch, preserving
the aspect ratio. We hypothesize that this is not an optimal
strategy as small object crops mostly contain zeros. The
features of the objects are diluted with irrelevant information,
which could confuse the model during the detection phase.
An alternative would be to replace zero padding (denoted no-
padding) with a larger part of the input image (i.e. simply crop
a 128 × 128 square around the support object), but patches
would be dominated by background information, probably
harmful as well for detection.

Instead, we propose several novel cropping methods to solve
this issue. Reflection: instead of zero pad to fill the entire
patch, the object is repeated in both directions. Hence, object
features are not diluted by zeros nor dominated by background
information. Same-size: it consists in resizing the support
objects to 128× 128 patches, preserving the aspect, no matter
its original size. It does not change anything for large objects
but prevents small objects patches to be dominated by zeros
or background. Multiscale: each support object is resized at
three different scales: small, medium, and large. The three
generated patches are 128× 128 and contain the same object
in different sizes. Each patch is used to compute the features
at a different scale. Mixed: it uses default extraction strategy
for small objects and same-size for medium and large ones.

These strategies are compared in Table II. Same-size yields
noticeable improvements for most classes compared to the
default strategy and gives the best overall results. However,
it is outperformed by reflection padding when looking only
at the performance on base classes. It improves mostly the
performance on small and medium objects. For large objects,
however, it performs similarly to the default strategy. This is

# Shots Baseline + Flip + Color + Cutout + Crop

1 Base 0.488 0.458 0.460 0.472 0.457
Novel 0.062 0.052 0.069 0.064 0.100

3 Base 0.511 0.475 0.470 0.461 0.452
Novel 0.144 0.186 0.186 0.197 0.220

5 Base 0.527 0.494 0.501 0.503 0.487
Novel 0.193 0.237 0.251 0.250 0.259

10 Base 0.538 0.508 0.508 0.504 0.503
Novel 0.286 0.312 0.281 0.341 0.359

TABLE III: Cumulative study of the proposed augmentation
techniques on DOTA with FRW method. mAP with a 0.5 IoU
threshold (mAP0.5) is reported for different number of shots.

expected as the extracted patches will be almost identical.
Using same size support objects simplifies the task for the
network as it reduces the intra-class in the support set. It makes
it easier to find what are the classes presented in the support
set. It is then easier to condition the detection on these classes.

Although it performs better overall, the performance on
small objects using the same-size strategy is lower compared
to the default one. In the case of very small objects, resizing
to a 128 × 128 patch is not optimal as it enlarges a lot the
object. The extracted features are highly unlikely to match
small objects in the query image. This is the motivation behind
the last extraction strategy. However, this is not beneficial, as it
performs lower than same-size both for base and novel classes.
It can be explained by the features discrepancies introduced
by having two separate extraction strategies at the same time.
Support objects from the same class, with slightly different
sizes, could have very different features which could confuse
the network during training.

While conceptually simple, it appears that same-size is the
best extraction strategy. It provides significant performance
gains over the default strategy both on base and novel classes.

B. Augmentation for robust query-support matching

Findings from section II-C suggest that the models struggle
to match support and query objects when their sizes differ. In
addition to the novel support cropping strategy, we propose an
augmentation process to improve the robustness of the model
and especially the query-support matching. This augmenta-
tion process is composed of several random transformations:
horizontal and vertical flips, color modifications, cut-out, and
random crop-resize. These are all applied to the query images.

It should be noted that these augmentation techniques
already exist, however, all are not directly compatible with
object detection, especially cut-out and crop-resize as they
could produce augmented view with no visible object. The
novelty of our work is to adapt cut-out and crop-resize for
object detection datasets and apply some augmentation in
the support branch to specifically improve the query-support
matching in FSOD.

Random cut-out consists in masking a random part of
an image. This forces the model to leverage parts of the
objects in the decision process and makes it robust to partial
occlusions. Generally, a random rectangle is masked out of the
image. This works well for classification, but in the context of
object detection, a random rectangle could completely mask
out some objects (especially small ones). Instead, we choose
to apply random cut-out independently on each object in a
query image. Thus, multiple rectangles can be sampled for
one image, masking only parts of the objects of interest.

Random crop-resize is an augmentation technique that
consists in selecting a random rectangular crop in an image
and resizing it to the original image size. This changes both the
scale and aspect ratio of the objects inside the image. Similar
to cut-out, in the context of object detection this must be done
carefully to prevent sampling crops without any object inside.
We propose to select a random non-empty subset of objects
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DOTA DIOR Pascal VOC

FRW SAA FRW SAA FRW SAA
Baseline Ours Baseline Ours Baseline Ours [4] Baseline Ours Baseline Ours Baseline Ours

Base classes 0.495 0.485 0.523 0.467 0.625 0.615 0.540 0.578 0.618 0.647 0.610 0.585 0.531
Novel classes 0.283 0.371 0.339 0.351 0.282 0.356 0.320 0.287 0.334 0.522 0.549 0.462 0.488

TABLE IV: mAP0.5 with 10 shots on three different datasets DOTA, DIOR and Pascal VOC. For each dataset, and each method
the table compare the performance with our improvements (augmentation and same-size extraction) against the baseline.

O inside the image, then compute the smallest rectangle r
containing all objects in O, and select a random crop between
r and the image boundaries. This guarantees having at least
one object inside the crop.

Table III shows that all augmentation techniques are benefi-
cial for the performance on novel classes. Altough it produces
a slight drop of performance on base classes, the combina-
tion improves mAP with 10 shots by 0.07 points on novel
classes. This is a significant improvement over the baseline.
Similar gains can be observed for the fewer shot settings,
which confirms a more resilient query-support matching with
augmentation.

IV. RESULTS AND EXPERIMENTS

To validate the results of our experiments on DOTA and
FRW, we trained both FRW and SAA with the best extraction
strategy and the full augmentation pipeline. Each method is
trained on DOTA and DIOR to guarantee that the proposed
methods improve the performance on aerial images. As a
control, we also train on Pascal VOC to verify that our
improvements are also superior on natural images. Table IV
gathers these results.

It shows that our improvements provide a significant perfor-
mance gain on novel classes for the two tested methods and
on all datasets. Larger increases can be observed for DOTA
and DIOR. This was expected as we specifically target aerial
images. In addition, our method outperforms significantly ex-
isting work on DIOR dataset [4]. On DOTA, such comparison
is impossible as no other FSOD method is benchmarked on
this dataset. Actually, one contribution [11] that focuses on
DOTA exists, but the performance is reported without any
fine-tuning on novel classes making the problem even more
difficult. Therefore, no fair comparison can be made, and it is
not included in Table IV.

V. CONCLUSION AND FUTURE WORK

In a nutshell, we have investigated the performance gap
between aerial and natural images for FSOD methods. It
seems clear that this gap is mainly due to low performance
on small objects. Aerial images contain significantly smaller
objects which partly explains the gap. Furthermore, the FSOD
performance compared with the baseline performance is cor-
related with the object size. Using information of the support
examples is beneficial for large objects (better performance
than the baseline) while detrimental for small objects. This
suggests a poor design of the support cropping methods.
We partly filled this gap through an augmentation pipeline
carefully designed for object detection, and a better support

information extraction strategy. Our proposed improvements
outperform existing work on DIOR dataset and improve
against the baseline on DOTA and Pascal VOC. While this is
an encouraging step, there remains a performance gap between
FSOD performance on aerial and natural images. Now that
a better support information extraction has been found, the
query-support matching mechanism must also be designed for
small objects.
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