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Abstract—Fine-grained ship detection in optical remote sensing
images is a challenging problem due to its long-tailed distributed
dataset, which is often coupled with the multi-scale of ship and
complex environment. In this paper, a novel average instance area
imbalance ratio (AIAIR) is firstly used for quantitatively eval-
uating long-tailed distribution and multi-scale coupled problem.
Based on which, we propose the idea of feature space decoupling
and augmentation guided by cross-Level semantic segmentation,
where features on different classwise-balance level are scheduled.
On this basis, a Siamese Semantic Segmentation Guided Ship De-
tection Network (SGSDet) is proposed to effectively facilitate fine-
grained ship detection performance. Our proposed method can be
easily plugged into existing object detection models. Numerical
experiments show that the proposed method outperforms the
baseline by 2.32% mAP on the ShipRSImageNet dataset without
extra annotations.

Index Terms—Ship detection, Remote sensing, Object detec-
tion, Long-tailed distribution problem

I. INTRODUCTION

Ship detection in optical satellite images has been widely
applied in military and civilian fields, such as maritime situ-
ation assessment, monitoring of important ports and targets,
maritime rescue, illegal fishing, etc. Although deep learning-
based ship detection methods have achieved the state-of-the-
art performance in optical remote sensing images, fine-grained
ship detection has always been a challenging problem, which
has been aroused extensive attention in recent years. One of
the most essential problem in fine-grained detection is its
long-tailed class distribution of samples, where the imbalance
distributed of classes makes the training of deep learning based
models moves to over-fitting.

Many studies have been conducted in recent years to address
this problem, Yifan Zhang et al. group these methods into three
categories, e.g., class re-balancing (SimCal [1], focal loss [2]),

information augmentation and module improvement [3]. Be-
sides, transfer Learning, as the mainstream paradigm approach
of information augmentation methods, has also been employed
to address the long-tailed problem, where knowledge learned
from the head classes are transferred to underrepresented
tail classes [3], such as Feature Cloud [4]. Xue Yang et al.
proposed a instance-level feature denoising method to enhance
the detection accuracy of small and cluttered objects [5].

Imbalance Ratio (IR) is the most popular measure of the
imbalanced data numbers across classes, as formulated in (3).
For classification and object detection tasks in general image,
the larger the IR, the larger the imbalance extent, which leads
to the lower of detection accuracy.

IR =
Nmajority

Nminority
(1)

where Nmajority is the sample size of the largest majority
class, and Nminority is the sample size of the smallest minority
class.

However, we observe from detection results on many object
detection tasks in remote sensing that performance of tail-
class is often better than head-class. Compared with general
images, there are two main difficulties in fine-grained ship
detection in remote sensing images. Firstly, the long-tailed
distribution problem often coupled with multi-scale of target,
specifically, targets with larger size can often achieve better
performance even with fewer training samples. Secondly,
imaging environment in remote sensing images is complex,
which causes the various features of targets, and leads to
low classification accuracy. For above reasons, the class re-
balancing methods are not suitable for long-tailed distributions
and multi-scale coupled problem in fine-grained ship detection
task in remote sensing image.
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In this paper, we present Average Instance Area Imbalance
Ratio (AIAIR) for quantitatively evaluating long-tailed distri-
butions and multi-scale coupling problems. Furthermore, the
AIAIR is proposed to schedule the classification level, where
semantic segmentation information is utilized for decoupling
and augmentation of the assigned feature space. In general,
a Siamese Semantic Segmentation Guided Ship Detection
Network (SGSDet) is designed for fine-grained ship detection.
Finally, we extensively evaluate our SGSDet method on the
ShipRSImageNet datasets [6], and demonstrate that it can
significantly increase the ship detection accuracy.

II. PROPOSED METHOD

A. Pipeline

Inspired by the idea proposed by Peng Chu et al. [7],
the feature space of each ship class could be decoupled to
class-generic, class-specific feature, and background feature.
However, if the assigned classification level is extremely
unbalanced and coupled with the multi-scale problem, it is
difficult to decouple the feature space directly. Therefore, in
this work, the features are decoupled according to a more
balanced level, where the class-generic features of each class
are extracted firstly, then they are transferred to the assigned
level, as shown in Fig.1.

Fig. 1. A hierarchically object detection dataset and class-generic feature
transfer.

The pipeline of the proposed method consists of seven steps.
1) Calculating and schedule the AIAIR for each classifica-

tion levels.
2) Choosing a more balanced classification level for feature

space decoupling.
3) Mapping the labels of the assigned classification level

to a more balanced level.
4) Training a Siamese Semantic Segmentation Network

with mapped labels and annotations supervision.
5) Generating Decoupling Matrix with features from the

Siamese Semantic Segmentation Network.
6) Decoupling and augmentation in features space.
7) Original features and augmented feature fusion.

B. Average Instance Area Imbalance Ratio

Firstly, We define the average instance area (AIA) to repre-
sent the multi-scale of ship instances as:

AIACj = Average(AreaiCj
) (2)

where AIACj
is average instance area of the Cj class, and

AreaiCj
is the area of the Cj with class instances index i.

Secondly, based on IR, AIAIR is calculated to quantitatively
describe the imbalance extent of long-tailed distribution cou-
pled with multi-scale problem of dataset:

AIAIR =
AIAmax

AIAmin
(3)

where AIAmax and AIAmin are the largest and smallest AIA
of the dataset, respectively.

C. Feature Space Decoupling and Augmentation Guided by
Cross-Level Semantic Segmentation

After calculating AIAIR of the dataset, features across dif-
ferent class level are decoupled and argumented by following
processes, as shown in Fig.2.

• Decoupling Phase: Decoupling the features space ac-
cording to a lower but more balanced level, obtaining a
decoupling matrix as D = G∪S∪B, where D denotes the
decoupling matrix, G denotes the class-generic features,
S denotes the class-specific features, and B denotes the
background feature.

• Augmentation Phase: Merging the decoupling matrix
with assigned feature to achieve feature transfer and
augment class-generic features by Hadamard product, as
F̂ = F ⊙ D = F ⊙ (G ∪ S ∪ B), where F denotes
the features in assigned level, and F̂ denotes the features
after augmentation.

• Fusion Phase: The assigned feature map and the aug-
mented feature map are fused to complement class-
specific features as F̂ ′ = F̂ ⊕ F , where F̂ ′ denotes the
fused features

Fig. 2. Cross level feature space decoupling.

Inspired by Yang [5], a Siamese semantic segmentation
network is used in this work to obtain a more approxi-
mate feature decoupling matrix, which is trained using cross-
level approximate semantic segmentation annotated by rotated
horizontal boxes. The overall feature space decoupling and
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Fig. 3. The structure of our SGSDet.

augmentation processing can be formulated as:

F̂ = F ⊙ Âsemantic

=

M+1⋃
i=1

F i ⊙ Âi
semantic

=

M+1⋃
i=1

F i ⊙ (Ĝi ∪ Ŝi ∪ B̂)

=

M+1⋃
i=1

F i ⊙ Ĝi ∪
M+1⋃
i=1

F i ⊙ Ŝi ∪ F i ⊙ B̂)

(4)

where F and F̂ ∈ RC×H×W denote the input feature map
and output feature map after augmentation, i is class index. M
denotes the number of ship classes at the another classification
level, Âsemantic ∈ RC×H×W denotes the cross-level approx-
imate decoupling matrix, Ĝ denotes the approximate class-
generic features, Ŝ denotes the approximate class-specific
features, and D̂ denotes the approximate background feature.

D. Overview of Framework

Fig.3 illustrates the pipeline of the proposed Siamese Se-
mantic Segmentation Guided Ship Detection Network (SGS-
Det), when merging with Faster R-CNN Network, it consists
of two sub-networks.

• Ship Detection Sub-Network: used for feature extraction,
feature fusion, classification and rotated bounding box
regression.

• Siamese Semantic Segmentation Sub-Network: a simple
segmentation network take feature maps from FPN of
Ship Detection Network for generating approximate fea-
ture decoupling matrix.

E. Ship Detection Sub-Network

Ship Detection Sub-Network consists of five modules.
1) Backbone: For feature extraction, same to Faster R-

CNN.
2) Neck: Using FPN for fusing multi-scale features.

Fig. 4. Features map fusion modes.

3) Feature Fusion Module: For feature fusion of the as-
signed feature map and the augmented feature map.

4) Region Proposal Network (RPN): For generating region
proposals, same to Faster R-CNN.

5) ROI Head: Converts generated proposals from RPN to
a fixed size, then run a classifier and regress a rotated
bounding box.

As shown in Fig.4, six different modes are proposed for feature
fusion. After feature fusion, RPN with ROI Head are used to
classify the fused features.

F. Siamese Semantic Segmentation Sub-Network

Since the input feature map of Siamese Semantic Segmen-
tation Sub-Network (SSSNet) is multi-branched, the decou-
pling matrix should keep the same dimension as the input.
Based on above analysis, the proposed SSSNet is designed
as shown in Fig. 5. SSSNet consists of multi-branch cascade
convolutions for generating multi-scale features. The output of
these concatenated convolutions will be concatenated together
for semantic segmentation after a 1 × 1 convolution and
interpolated to the same size, and then output in parallel after
a 1× 1 convolution and concatenated as a decoupling matrix.
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Fig. 5. The structure of our SSSNet.

G. Loss Function Design

The overall loss of the SGSDet can be formulated as:

L = LRPN + Lreg + Lcls + Lseg (5)

where LRPN is the RPN loss in two-stage detector, Lreg

denotes the rotated bounding box regression loss, Lcls denotes
the classification loss, and Lseg denotes the Siamese semantic
segmentation loss. LRPN and Lcls all use standard cross-
entropy loss. The Smooth L1 loss is used for rotated bounding
box regression, and Focal loss is used as the semantic segmen-
tation loss.

III. EXPERIMENTAL RESULTS

A. Dataset, Evaluation Metrics, and Experiments Setting

A variety of datasets have been established for long-tailed
image classification and object detection in recent years.
For fine-grained ship detection, there are three benchmark
datasets: HRSC2016 [8], and ShipRSImageNet [6], up to now,
ShipRSImageNet is the largest fine-grained remote sensing
dataset for ship detection. It contains over 3435 images
with 17573 ship instances in 50 categories, providing precise
horizontal and orientated bounding boxes annotation. Due
to the variety of ship types, ShipRSImageNet is a long-
tailed ship detection dataset. We evaluate the performance
of the proposed SGSDet architecture on the ShipRSImageNet
dataset [6]. Following common practice, we use total average
precision mAP , and mAP for different AIAIR (AIAIR < 5,
5 < AIAIR < 10, AIAIR > 10) as metrics for performance
evaluation.

All the evaluation are implemented with the PyTorch frame-
work [9] and MMdetection toolkit [10] in default settings. For
all experiments, we use 2 NVIDIA RTX 3090 GPUs each with
24GB memory, batch size is set as 4, and the SGD optimizer
is utilized to train the model. Models are trained 100 epochs;
the initial learning rate is set as 0.01 and decreases by a ratio
of 0.001 in the 80th and 90th epoch.

B. AAAIR of the ShipRSImageNet dataset

The sorted instance number of each class and correspond-
ing average mAP of different object detection methods in

Fig. 6. Class distribution and total average mAP of ship detection task based
on ShipRSImageNet dataset.

Fig. 7. Average instance area distribution and average mAP of ship detection
task based on ShipRSImageNet dataset.

ShipRSImageNet are shown in Fig.6. We can deduce from the
Fig.6 that the ship detection performs better when the number
of training samples decreases. The sorted AIA of each class
is positively correlated with the corresponding average mAP
of different object detection methods, as shown in Fig.7.

Ships in ShipRSImageNet dataset [6] are hierarchically
classified into four levels. The IR and AIAIIR are also different
because the number of classes is different for different classifi-
cation levels, as summarized in Table I. The larger the AIAIR,
the larger the imbalance extent of the long-tailed distributions
and multi-scale coupled problem.

C. Evaluation Results on ShipRSImageNet

1) Qualitative Evaluation: We qualitatively compare the
differences between SGSDet (with cross-level segmentation
from level0) and Faster R-CNN (Update for oriented bound-
ing boxes detection, OBB) on ShipRSImageNet Level3 ship
detection task [6]. The sample detection results are illustrated
in Fig. 8. For a fair comparison, we employ ResNet50 as
backbone network and compare the detection performance of
the same images with score-threshold 0.7. Fig.8 shows that
our SGSDet effectively captures small objects and performs
better on complex scenes by exploring more discriminating
features.

TABLE I
IR AND AIAIR OF THE SHIPRSIMAGENET DATASET.

Classification Level # classes IR AIAIR
Level 0 2 15.08 1.18
Level 1 4 6.83 4.23
Level 2 25 14.32 3223.04
Level 3 50 90.91 259.74
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Fig. 8. Sample detection results from Faster R-CNN and our SGSDet method
on ShipRSImageNet.

TABLE II
SHIP DETECTION RESULTS ON THE SHIPRSIMAGENET LEVEL3 SHIP

DETECTION TASK WITH DIFFERENT FUSION MODES

Fusion Mode mAP Gain
Baseline 62.23 -
Mode 1 62.64 0.41
Mode 2 63.74 1.51
Mode 3 62.54 0.31
Mode 4 64.55 2.32
Mode 5 62.82 0.59
Mode 6 62.96 0.73

2) Quantitative Evaluation: We compare the detection per-
formance of proposed SGSDet using Faster R-CNN (OBB)
as baseline. Table II reports the experimental results on the
ShipRSImageNet Level3 ship detection task using Level0 as
the cross-level semantic segmentation but with different fusion
modes. As Shown in Table II, the mAP gain obtained with
fusion mode 4 is significantly better than the other modes. As
shown in Table III, SGSDet improves the mAP accuracy by a
clear margin guided by different cross-level semantic segmen-
tation. When using the semantic information of level3 and with
the fusion mode 0, the method is equivalent to Instance-level
Feature Map Denoising proposed by Yang [5]. Using a more
balanced classification level, such as the semantic information
of level 0 and level 1, as the guiding information for feature
space decoupling, is the most effective. Hence can deduce the
proposed feature space augmentation method can significantly
improve long-tailed classification accuracy.

IV. CONCLUSION

This paper studied an feature space decoupling and augmen-
tation method guided by cross-level semantic segmentation for
fine-grained ship detection. The proposed scheme consisted
of three major steps: 1) Generate decouple matrix by using
the Siamese Semantic Segmentation sub-Network, 2) Feature
augmentation features map using the decouple matrix, 3)
feature fusion. In the experiments, it was shown that the pro-
posed SGSDet can effectively decouple and enhance feature

TABLE III
QUANTITATIVE COMPARISON OF EXPERIMENTAL RESULTS OF SGSDET

ON THE LEVEL 3 SHIP DETECTION TASK OF SHIPRSIMAGENET DATASET

3
#Level Fusion

Mode
mAP

Total AIAIR<5 5<AIAIR<10 AIAIR>10
- - 62.23 77.42 65.31 37.03
0 mode 4 64.55(+2.32) 79.20(+1.78) 67.91(+2.61) 39.79(+2.76)
0 mode 0 62.54(+0.31) 78.89(+1.47) 67.32(+2.01) 36.47(-0.57)
1 mode 4 63.97(+1.33) 78.83(+1.41) 67.14(+1.82) 39.12(+2.08)
1 mode 0 63.21(+0.98) 77.30(-0.11) 66.54(+1.23) 39.26(+2.23)
2 mode 4 62.39(+0.16) 76.62(-0.80) 65.56(+0.33) 38.34(+1.31)
2 mode 0 62.53(+0.30) 74.47(-2.95) 67.88(+2.58) 39.36(+2.33)
3 mode 4 62.51(+0.28) 76.59(-0.83) 66.21(+0.89) 38.34(+1.15)
3 mode 0 62.62(+0.39) 76.64(-0.78) 66.97(+1.66) 37.62(+0.58)
1 All experiments based on Faster R-CNN framework.
2 All experiments use ResNet50 as the backbone, and use the standard FPN after backbone.
3 # Level indicates which classification level should be used for cross-level semantic segmentation guided feature space

decoupling and augmentation.

space guided by a more balanced classification level semantic
segmentation, hence greatly facilitated detection performance.
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