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Abstract—Multi-target multi-camera tracking is the task of
determining the trajectories of objects within a network of
cameras. Besides many others, it is a crucial task, e.g., in
traffic analysis or law enforcement. Current research mainly
focuses on offline algorithms for cross-camera association, which
require all video data at once and often lack real-time capability.
Thus, such approaches are unsuitable for tracking a criminal’s
escape route and enabling immediate intervention and arrest.
To close this gap, we introduce a novel online multi-target
multi-camera tracking method in this work which integrates
spatial-temporal information and applies a new probability-based
association metric. Moreover, we prove the real-time capability
and significantly outperform the baseline on two datasets. In
addition, the performance gap to more complex and slower offline
methods is discussed to indicate the current state of research.

Index Terms—tracking, multi-camera, online, real-time

I. INTRODUCTION

Multi-target multi-camera tracking (MTMCT) aims at track-
ing objects such as persons or vehicles across a network
of overlapping and non-overlapping cameras. Potential appli-
cations include the assistance of law enforcement agencies,
but it is also crucial for automatic traffic monitoring and
signal time planning. Recent works from the literature mostly
focus on solving the task of cross-camera association with
offline approaches [1]–[4]. In such a system, single-camera
tracks are pre-calculated by an independent component and
then clustered in a subsequent step. As a result, offline
approaches require all data and information before the actual
MTMCT. In contrast, online algorithms process the videos
serially, i.e., frame-by-frame, necessary for real-time real-
world applications. For instance, in the pursuit of criminals,
decisions have to be made in real-time to arrest a suspect
immediately. Since there is a lack of online algorithms in the
research community, we propose a novel MTMCT framework
that is evaluated on pedestrian and vehicle tracking tasks using
the MTA [4] and the CityFlow [5] dataset, respectively. A new
inter-camera association procedure represents the core contri-
bution of our work. The component manages the life-cycle
of multi-camera tracks (MCTs) based on confirmed single-
camera tracks (SCTs) from different cameras. In detail, an
association procedure is introduced that leverages information
from overlapping cameras, spatial-temporal information, and
a probability-based matching algorithm. The contributions of

Fig. 1: Overview of the proposed online multi-camera tracker.
Tracks are updated frame-by-frame based on current single-
camera track detections Dt. SCTs that are not assigned to a
known MCT (Dr

t ) are either merged into a MCT visible in
an overlapping camera, or initialized as a new MCT (T n

t ) and
soft-assigned to a set of possible predecessors.

our work can be summarized as follows: i) We propose an
online and real-time MTMCT component that operates on
the frame-by-frame output of multiple tracking-by-detection
single-camera trackers. ii) We introduce a novel probability-
based matching procedure to connect single-camera tracks to
previous occurrences of the same identity and explore the
benefits of an implicit homography model to match SCTs
from overlapping cameras. iii) Last, we provide the first
baseline results of any online approach on the MTA dataset
for pedestrian tracking [4] and demonstrate the transferability
to different scenarios, such as vehicle tracking.

II. RELATED WORK

MTMCT has the goal to capture the trajectories of multiple
objects across a network of possibly non-overlapping cameras.
So far, the focus of the MTMCT research community has been
mainly on offline systems that perform post-processing on the
output of several single-camera trackers to merge the obtained
SCTs into MCTs.

A. Offline MTMCT

Most commonly, offline MTMCT is treated as a clustering
problem [1], [3], [4], [6], [7]. Pairwise distances are calculated
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to determine whether a set of SCTs belong to the same
object. Based on this procedure, recent advances indicate that
the integration of a scene model to leverage spatial-temporal
information is highly beneficial [1], [2], [4], [8]–[10]. Such
information is either incorporated into the distance function [4]
or is directly used as hard constraints to filter out infeasible
cross-camera transitions [1], [8], [9]. Liu et al. [2] directly
integrate the scene topology into the design of the clustering
algorithm by proposing a local clustering method to merge
tracklets in adjacent cameras first. Another work [10] goes one
step further and only allows associating tracks from adjacent
cameras. However, we argue that hard constraints are not
feasible for person tracking since the movements of persons do
not follow strict rules, and people might be entering buildings
or cars and reappear in cameras further away. Thus, we rely
on softly integrating spatial-temporal information in this work.

B. Online MTMCT

In contrast to the previously introduced approaches, online
algorithms solve the MTMCT task on a frame-by-frame basis,
i.e., clustering algorithms are not suitable. If an instance has
already been seen, it is also desirable that new SCTs are
assigned to the multi-camera trajectory of that instance as
soon as possible, which makes hybrid approaches difficult.
Therefore, the instance must be re-identified without having all
information about the new tracklet available. Due to the more
challenging nature, only a few works have dealt with solving
it. Zhang et al. [11] introduce a framework for non-overlapping
cameras. If a track is lost within a camera view, it is marked as
such, and the algorithm tries to re-connect it to new detections
solely based on appearance features. After a given period
without a match, tracks may only be reactivated by detections
from other cameras. Spatial-temporal information is integrated
by analyzing usual transition times in the training data. The
authors of [12] follow a similar pipeline but only use the
feature distance as a similarity metric. Further work [13] deals
with special cases such as networks, which solely consist of
cameras with overlapping field of views (FOVs). Tracking is
entirely performed in the world coordinate system based on
visual, spatial, and motion information, i.e., no separate single-
camera tracking stages are applied.

Our system builds on [11] but is enhanced by a han-
dling mechanism for overlapping FOVs and an innovative
probability-based inter-camera association procedure.

III. METHODS

Based on a set of video streams V = {V1, . . . , Vn} from
n synchronized cameras, detections of confirmed tracks Dt

in each time step t are obtained by a single-camera tracking
pipeline consisting of an object detector, a re-identification
feature extractor, and a single-camera tracker. Each track de-
tection Di ∈ Dt is represented by a tuple (pos, f, c, IDSCT ),
i.e., the bounding box position pos, an appearance feature
vector f, the camera identifier c ∈ {1, . . . , n}, and a unique
single-camera track id IDSCT . T stands for the set of MCTs
currently considered by the tracker. A MCT Tj ∈ T is

formed by a track id IDMCT , a state s, the running average
appearance feature f̃, a set of track detections {Di|Di ∈
Dt, Di shows objects IDMCT }, and the time step tlast when
the track was lastly seen. In the following, we describe the
baseline approach that resembles [12] first and propose our
online multi-camera tracker approach afterward.

A. Baseline

In the baseline approach, we only consider two states
s ∈ {active, sleeping}. In contrast to sleeping tracks, active
tracks are currently visible in at least one camera. In the
following, the sets of sleeping and active tracks are denoted T s

t

and T a
t , respectively. Furthermore, Tt = T s

t ∪ T a
t applies for

the baseline approach. In each iteration, the track detections
included in Dt go through the following stages.
Associate to active - First, active MCTs are updated by
assigning the current detections from corresponding SCTs. If
an MCT is no longer tracked in any camera, its state will
change to sleeping. Note that an MCT can disappear in one
camera but remain active in another camera, i.e., the object
left the overlapping area of the two cameras.
Associate to overlapping - Subsequently, remaining track
detections Dr

t are associated to overlapping tracks. The Hun-
garian algorithm determines the best matching between new
SCTs and existing MCTs based on appearance features for
each overlapping camera pair. If the distance is below the
threshold τo, an SCTs will be associated with the correspond-
ing MCT. Next, the same procedure is applied to the residual
track detections from the previous step and sleeping tracks. In
this case, the threshold τic is used to decide the association.
Initialize new tracks - Leftover SCTs show previously unseen
identities and are thus initialized as new active MCTs.
Remove finished tracks - Sleeping tracks are finally closed
when the time without update exceeds Amax, i.e., t− tlast >
Amax applies.

B. Improvements

One major drawback of current online multi-camera trackers
is that SCTs are associated with MCTs directly when appear-
ing in a camera or after a specific time interval, e.g., ten time
steps. The first option is fast, but decisions must be made
with little information. Appearance features might be biased
since persons entering a camera are often only partly visible.
Waiting for a fixed time interval increases the computational
overhead and is often unnecessary since only a few tracks are
possible predecessors. We address these issues by proposing
an association mechanism that automatically determines the
optimal decision time by taking possible predecessors into
account. Moreover, we leverage spatial-temporal information
to decrease the number of possible predecessors and apply an
improved homography model.

In addition to the baseline, we introduce the pending state.
The set of pending MCTs is referred to as T p

t in the following
and represents tracks with multiple possible predecessors.
Fig. 1 provides an overview of the proposed online multi-
camera tracker.
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Associate to active - Analogous to the baseline approach,
active tracks are updated in the first pipeline stage. Please
note that this also applies to pending tracks. When the single-
camera trackers no longer provide evidence for a pending
track, it is lastly compared to its most likely predecessor. If the
appearance feature distance is smaller than the threshold τic
the pending track is merged into its predecessor. Otherwise, a
new sleeping identity hypothesis is initialized. To prevent the
creation of too many hypotheses, short pending tracks, i.e.,
when t− tlast < Amin applies, are deleted.
Associate to overlapping - The remaining SCTs in Dr

t are
new to the multi-camera tracker, meaning one of three things.
First, the SCT shows an object that is currently not visible in
any other camera of the camera network. Second, a new SCT
is currently visible in another overlapping camera, or third,
an object enters two overlapping cameras simultaneously,
thus producing two new SCTs. The mechanism to determine
whether two tracks overlap is improved to handle these cases.
A homography score is incorporated instead of solely relying
on visual information about the objects’ appearances and the
information that the positions are located in an overlapping
area. To do so, we train a fully-connected binary classifier for
the camera network. Positions pos1 and pos2 with correspond-
ing camera identifiers c1 and c2 serve as input and the training
is supervised by the cross-entropy loss and the information
whether the two track detections D1 and D2 belong to the
same identity. Then, the homography score h is calculated as
the inverse confidence P of the classifier that both tracks show
the same object, as shown in Eq. 1.

h(D1, D2) = 1− P (pos1, pos2, c1, c2), (1)

The cost matrix in this associate to overlapping stage is
constructed as the sum of the homography score and the
appearance feature distance. Analogous to the baseline, cost
matrices are calculated, and best agreements are determined
with the Hungarian algorithm. This is done separately for the
second and third cases. Similar to the baseline, τo is applied
to decide whether two tracks should be associated.
Initialize new tracks - Track detections in Dr

t that are still
not associated with an MCT either show a known identity
last seen in the same camera, a known identity that lastly
occurred in another camera, or an identity that has not been
previously tracked. Albeit within-camera tracking is the task
of the single-camera tracker, our multi-camera tracker handles
the first option since especially persons might, e.g., enter and
leave buildings or disappear for an extended period due to
large obstacles. Current single-camera trackers only handle
short-term occlusions lasting for a few frames. We treat the
first two cases differently since camera-related characteristics
such as illumination, viewpoint, and calibration influence the
appearance features. For instance, the feature distance of
similar objects within the same camera might be smaller
than the distance of the same identity in different cameras.
Therefore, an SCT is only matched to an MCT that was last
visible in the same camera if the feature representations of
the tracks are very similar measured by a separate within-

τO τWC τIC λ AgeMax AgeMin

1.6 1.2 0.7 0.1 4000 10

TABLE I: Overview of the hyper-parameters used.

camera threshold τwc. All SCTs not matched in the previous
step are initialized as new MCTs but not linked to a unique
identity hypothesis. Instead, they are connected to a set of
possible predecessors P . Possible predecessors are sleeping
MCTs that were last active in another camera and meet the
spatial requirement that a direct path between the cameras
exists without crossing through the FOV of a third camera. In
addition, temporal information is included to filter impossibly
fast transition times ∆ttrans by applying a time penalty tp.
Eq. 2 shows the calculation based on the mean and standard
deviation of all transitions between the two cameras observed
in training data and a factor λ to balance the contribution.

tp =
|∆ttrans − µtrans|

σtrans
· λ (2)

The primary motivation for this soft assignment of possible
predecessors is that observing a tracklet for a more extended
period allows more stable features. If an object enters the
camera, it might be detected before it becomes entirely visible,
thus strongly distorting the appearance feature. Additionally,
suppose two MCTs are highly similar to the new SCT, and
a decision based on the feature distance is difficult. In that
case, one of the two possible predecessors may be merged
with another SCT shortly after, leaving only one option, thus
making the decision easier.
Update predecessors - Pending MCTs are updated in each
tracker iteration to reduce the number of predecessors. The
appearance feature distance and time penalty are computed
for all remaining possible predecessors, using the current
representation of the active tracklet. Subsequently, the Softmax
function is applied to the negative distances to obtain matching
probabilities for each possible predecessor. Unlikely predeces-
sors are then removed from P if the matching probability is
lower than 1

|P| . As the set becomes smaller, fewer comparisons
have to be carried out in later iterations, making the procedure
significantly faster than keeping a connection to all possible
predecessors and making a decision after a specific time.
Additionally, the decision process is way more flexible. If
a possible predecessor has a very high matching probability,
more competitors are eliminated, but when multiple tracks are
similar, the decision is postponed until more information is
available. When only one predecessor remains, it is merged
with the MCT in pending state if their distance is smaller than
the inter-camera threshold τic. If the distance is too large, or
if the set is empty at any other point, the MCT switches from
pending into active, creating a new unique identity hypothesis.
Remove finished tracks - MCTs in T s

t are closed and
removed when the duration without update exceeds Amax.

IV. EVALUATION

This section discusses the experiments conducted within the
scope of this work. The experiments were performed with

535



Tracker Online IDF1 IDP IDR FPS

WDA [4] 28.9 32.0 26.3 -

Baseline ✓ 22.5 24.2 21.0 21.3
Ours ✓ 26.8 28.8 25.1 37.7

TABLE II: Comparison of our tracker with the baseline and
the offline WDA tracker on the whole MTA dataset.

Distance Metric τo τic τwc IDF1 IDP IDR

Euclidean distance 1.50 1.20 0.70 36.9 39.3 34.8
Euclidean distance 1.60 1.20 0.70 37.7 40.1 35.6
Euclidean distance 1.70 1.20 0.70 36.1 38.4 34.1

Euclidean distance 1.60 1.15 0.70 36.8 39.1 34.8
Euclidean distance 1.60 1.20 0.70 37.7 40.1 35.6
Euclidean distance 1.60 1.30 0.70 35.8 38.1 33.9

Euclidean distance 1.60 1.20 0.65 36.7 39.0 34.7
Euclidean distance 1.60 1.20 0.70 37.7 40.1 35.6
Euclidean distance 1.60 1.20 0.75 36.5 38.8 34.4

Cosine similarity 1.50 0.25 0.25 36.8 39.1 34.6

TABLE III: Evaluation of the influence of threshold parame-
ters on the ext-short subset of the MTA dataset.

an Nvidia GeForce GTX TITAN X and 10 Intel Xeon CPU
e5-2630 v4. We evaluate our approach on two datasets from
different domains: the Multi-camera Track Auto (MTA) [4]
dataset for person and the second validation scenario from
the CityFlow [5] dataset for vehicle tracking, respectively.
Regarding evaluation metrics, the identity F1 (IDF1), identity
precision (IDP), and identity recall (IDR) scores proposed
by Ristani et al. [14] established themselves as the standard
metrics for evaluating MTMCT systems. The single-camera
tracking pipeline consists of well-established components
that can run in real-time on affordable hardware [15]. The
YOLOv5m [16] detector is followed by the ABD-Net [17]
as feature extractor and DeepSORT [18] as the single-camera
tracker. Hyper-parameters are provided in Tab. I.

A. MTA Dataset

We compare our tracker to the baseline and the state-of-
the-art offline tracker on the MTA dataset in Tab. II. For a
fairer comparison, all methods utilize the same single-camera
tracking pipeline. Thus, differences are purely caused by the
respective MTMCT component.

The results show that the presented algorithm achieves
significantly better results with faster runtime than the baseline
implementation, which resembles the algorithm by Gaikwad
et al. [12]. Although the assignment of an SCT to possible
predecessors seems more effortless in the baseline implemen-
tation as it is done immediately and involves fewer processing
steps, it is still less efficient when there are many sleeping
MCTs. First, spatial-temporal information is not used to filter
possible predecessors. Instead, the feature distance to every
sleeping MCT is calculated to create a cost matrix, which is
then used by the Hungarian algorithm to calculate a minimum
assignment. In addition, there are also more MCT hypotheses
overall because false-positive SCTs that are too short are not
removed as in the presented MTMCT component, and fewer

Homography Time filtering IDF1 IDP IDR

No No 33.0 35.1 31.2
No Yes 33.4 35.5 31.5
Yes No 37.3 39.7 35.2
Yes Yes 37.9 40.3 35.7

Distance [4] Yes 35.3 37.5 33.4

TABLE IV: Results with and without the homography model
and time filtering on the ext-short subset of the MTA dataset.
Additionally, the homography model is exchanged with a
distance by transforming the position of a detection from one
to the other camera.

λ IDF1 IDP IDR

0 37.4 39.8 35.2
0.05 37.4 39.9 35.3
0.10 37.9 40.3 35.7
0.15 37.5 39.9 35.3

TABLE V: Evaluation results for different values of the time
penalty factor λ on the ext-short subset of the MTA dataset.

tracks are matched in the baseline approach. Moreover, the
results prove the real-time capability of our tracker. 37.7 FPS
are achieved for six parallel camera streams on the evaluation
system. However, the results also show that the performance
of the online tracking component is behind the state-of-the-
art offline tracker. This finding was expected since offline
algorithms perform global optimization strategies with all
information available. In contrast, the online algorithm has to
make decisions on the fly. In numbers, the difference between
current state-of-the-art online and offline trackers is about
6.5% points or 28% (Baseline vs. WDA) regarding IDF1. We
close this gap thereby reducing the difference to about 2%
points or 7.8% (Ours vs. WDA).

Several ablation studies and justifications of parameter
choices are presented in Tab. III, Tab. IV, and Tab. V. The
results are achieved on the ext-short subset of the MTA dataset.
One can observe that the use of homographies has the greatest
impact on performance followed by the thresholds. Further-
more, in comparison with another homography approach from
literature [4], our binary classifier achieves significantly better
results. The use of the time filtering and the time penalty is
beneficial as well, but improvements are smaller.

Fig. 2 shows a selection of trajectories through multiple
cameras captured by our multi-camera tracker. Due to our
handling of overlapping areas, persons are accurately tracked
across multiple cameras, even if they are tiny and in the
background. Moreover, the multi-camera tracker correctly re-
identifies persons after interruptions caused by occlusions.

B. CityFlow

This experiment aims to evaluate the applicability of the
proposed MTMCT component within a different context.
Instead of adapting all components of the whole pipeline to
the CityFlow dataset, the object detector, the feature extractor,
and the single-camera tracking components are taken from [1].
In addition, some changes had to be made to the multi-camera
tracking component. Due to a lack of training data, it is impos-
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Fig. 2: Qualitative results.The tracks cross multiple camera and
are correctly assigned to their ground truth identity. Ground
truth is shown in green, and all other colors represent single-
camera tracks assigned to the same identity hypothesis.

Tracker Online IDF1 IDP IDR

Baseline from [1] 34.4 22.1 78.4
+ BG filtering + Exclude BG boxes + Exclude overlapping boxes 48.2 34.8 78.1

Baseline ✓ 17.1 10.8 42.2
Ours ✓ 40.6 39.7 41.6

TABLE VI: Evaluation results on Scenario 2 of the CityFlow
dataset.

sible to train a homography model or derive temporal informa-
tion. However, homography transformations are provided for
each camera of the dataset to transform pixel coordinates into
GPS positions, and one can approximate the distance in meters
from two GPS positions. Such approximations lead to worse
results for the MTA dataset than a learned implicit model.
Still, the results are, in any case, better than without including
any spatial information in the decision process. Since there
was no way to obtain the required temporal information, we
removed both the time filtering and the time penalty from the
multi-camera tracking component.

Tab. VI compares our tracker with the baseline and [1].
Our tracker outperforms the baseline by even a large margin
in comparison with the MTA dataset. The offline clustering
baseline from [1] delivers worse results than our online tracker
but exceeds it if additional preprocessing steps are carried out.

V. CONCLUSION

This work proposed an online multi-camera tracker that uses
a novel cross-camera association method and spatial-temporal
information to reduce the gap to more complex offline tracking
algorithms. Our tracker significantly outperforms the baseline
approach on two datasets and achieves real-time processing.
We hope that our work will spark further research to close the
gap between online and offline multi-camera trackers.
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