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Abstract—In this paper, we propose a new method for
automatic change detection in multi-temporal SAR images
based on statistical wavelet subband modeling. The proposed
method allows to take into account the correlation structure
between subbands by modeling the wavelet coefficients through
multivariate probability distributions. Two types of correlation
are investigated: inter-scale dependence and inter-orientation
dependence. The multivariate Gaussian distribution is used to
model the interdependencies between wavelet coefficients at
different orientations and scales. Kullback-Leibler similarity
measures are computed and used to generate the change map.
We show that the information residing in the correlation between
subbands improve the accuracy of the change map and lead to
better performance.

Index Terms—Change Detection, Kullback-Leibler (KL)
divergence, Multivariate Gaussian distribution, Multi-temporal
synthetic aperture radar (SAR) images, Wavelet Transform,
Subband dependence.

I. INTRODUCTION

Change detection in remote sensing becomes very important
for environmental monitoring [1], [2], damage assessment
[3], land cover dynamics, analysis of urban changes [4],
agricultural surveys [5], analysis of forest or vegetation
changes [6], [7]. Synthetic aperture radar (SAR) sensors are
widely used for change detection [8], [9]. They can provide
high resolution multi-temporal images, at short intervals and
during complete seasonal cycles. Change detection is a process
that analyzes a pair of SAR images of the same geographic
area acquired at different times and identifies eventual changes.
The result is a generation of a change detection map in which
changed area are explicitly identified.

Change detection in multitemporal single-polarization SAR
images is usually carried out in an unsupervised way since
the ground truth is usually unavailable. Unsupervised change
detection consists to discriminate between two classes, namely
changed and unchanged classes, without any prior information.
Generally, after pre-processing the SAR images (geometric
correction, co-registration, speckle filtering), the unsupervised
change detection performs by comparing some features of the
two images by using some similarity metrics resulting in a
change map, and then a threshold is applied to produce two
classes associated with changed and unchanged pixels.

In the literature, several unsupervised change detection
approaches have been proposed and can be classified in
two groups: methods based on pixel intensity and methods
based on local statistics [10]. The first one is based on
the pixel intensity and the neighboring of the pixel. They
include image differentiating, mean ratio/log-ratio measures
[11], [12], Gauss log-ratio [13], etc. The second one uses the
local statistics estimated by considering some local probability
density functions (pdfs) of the neighborhood of homologous
pixels of the pair of images used for the change detection.
These distributions have been chosen particularly to model
adequately the statistics of SAR images. Once the parameters
of the chosen distribution are estimated, their comparison can
be performed using different criteria and the most usual one is
the Kullback-Leibler divergence (KLD) [14], [15]. For the final
step of the change detection process, the decision threshold
is selected to produce binary change detection map. Several
methods have been proposed to determine the best threshold
value in a completely unsupervised manner: to name a few of
them, CFAR algorithm [16], Otsu’s method [17], Kittler and
Illingworth (K&I) algorithm [18].

Standard pdf based change detection methods focus on
univariate models. These models are relevant for detecting
changes in homogeneous areas. However, these models lack in
capturing changes near edges or textures. Wavelet transform is
a powerful modeling tool that can lead to performant texture
modeling and change detection. Indeed, texture can be easily
represented and discriminated in wavelet domain [21]. Wavelet
transform is used to decompose the image into multiscale
oriented subbands that are sensitive to horizontal, vertical
and diagonal edges. In the community of multi-temporal
SAR change detection, several works on statistical wavelet
subband modeling have been developed based on univariate
models. Indeed, wavelet coefficients have been modeled
as independent Gaussian variable or as jointly Gaussian
vectors [19]. Recently, non-Gaussian distributions of the
wavelet subband coefficients are frequently used. In fact,
the generalized Gamma distribution (GΓD) [20], [21] and
the generalized Gaussian distribution (GGD) [22], [21] are
suitable to model the wavelet coefficient magnitudes of each
subbands, since they are more peaked and heavy-tailed than
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the Gaussian distribution [23]. Closed-form expression of
Kullback-Leibler divergence for both GGDs and GΓDs are
given in the literature to assess the similarity [21], [14], [20].

Generally, the subbands are assumed to be independent
and no dependence across wavelet orientations and scales are
modeled. But this dependence exists and it can be employed
to provide better accuracy in the similarity measure. To the
best of our knowledge, few works have been developed in
the literature aiming to take into account the correlation.
In [24], author studied the correlation properties of wavelet
transform coefficients at different subbands and resolution
levels, applying these properties on an image coding scheme
based on neural networks. In [25], a joint alpha-stable
sub-Gaussian distribution was used to model dependence
across wavelet orientations and scales for texture retrieval.
Good results have been obtained, but a computationally
complex gaussianization step was required.

In this paper, a change detection method based on
wavelet coefficient magnitude modeling is proposed to take
into account the correlation structure between subbands
by modeling the wavelet coefficients through multivariate
probability distributions. Two types of dependence are
investigated in this paper: inter-scale dependence and
inter-orientation dependence. The first is to model the
dependence between the scales of the same orientation,
and, the second is to model the dependence between the
orientations of the same scale. We show that the information
residing in the correlation between subbands improve the
accuracy of the change map. The multivariate Gaussian
distribution (MGD) is a natural extension of the univariate
Gaussian distribution (GD). Indeed, the Gaussian distribution
(GD) gives a quite good approximation of the probability
distributions of a small region (a sliding window) [26] and
when some Gaussianity are introduced into the data when the
images were re-sampled and filtered. Moreover, MGD can be
used to model wavelet coefficient magnitudes and correlation
between subbands. In addition, a closed-form expression exists
for the KLD between two MGDs.

The paper is organized as follows. In section II, we
introduce two multivariate statistical models used for our
study. They model the inter-scale and the inter-orientation
dependence. Change detection using Kullback-Leibler
divergence are presented in section III, where the former is
calculated for the two cases cited before. Real data used for
evaluation and experimental setting are described in section
IV. Finally, the discussion, and some concluding remarks
close up this paper.

II. STATISTICAL MODELING IN WAVELET DOMAIN

In this section, a multivariate Gaussian distribution referred
as MGD is used. A sliding window manner is applied for
change detection and the wavelet transform is applied in each
window producing multiscale oriented subbands. The general
framework of the proposed method is shown in Fig. 1.

A. Inter-scale dependence

After wavelet decomposition, we have 4L sub-images where
L is the number of scales. These sub-images are represented
at this stage by X i = {Hi,V i,Di,Ai} where i ∈ {1, 2}
and Hi = (Hi
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sub-images to quantify the dependence between scales.

B. Inter-orientation dependence

To measure the inter-orientation dependence, we constitute
a new set of vectors Yi = {Y i
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t are 4-dimensional random
vectors composed by variables representing the sub-image
horizontal, vertical, diagonal details and approximations,
respectively, at the scale j where j ∈ {1, 2, ..., L} and Y i

j are
distributed according to MGDs. To measure the dependence
between orientations of the same scale, the 4 × 4 covariance
matrices are estimated for each scale from sub-images.

III. CHANGE DETECTION BASED ON KULLBACK-LEIBLER
IN WAVELET DOMAIN

A. Kullback-Leibler divergence

To quantify a change detection between two acquisition
dates we need to analyze the modification of the statistics of
each pixel’s neighborhood. Several approaches can be taken:
the mean square error between the two distribution, the norm
of a vector of moments, etc [26]. In our study, we choose to
use the Symmetric Kullback-Leibler distance as a similarity
measure since it is a good similarity indicator for change
detection [21]. If the statistics of the two sliding windows are
the same the symmetric Kullback-Leibler distance is small. Let
X1 and X2 be two random variables with probability density
functions fX1 and fX2 . The KLD from X2 to X1 is given by

KL(X2||X1) =

∫
log

(
fX1(x)

fX2(x)

)
fX1(x)dx, (1)

The symmetric KL similarity measure between X1 and X2 is

KL(X1, X2) = KL(X2||X1) +KL(X1||X2). (2)

If the X1 and X2 are distributed according to a GD with
mean µ1 and µ2 and variance σ1 and σ2, respectively, the
symmetric version of the KLD has the following form

KL(X1, X2) =
σ4
1 + σ4

2 + (µ1 − µ2)2(σ2
1 + σ2

2)

2σ2
1σ

2
2

(3)

If X1 and X2 are two random k-vectors with joint density
functions fX1 and fX2 , respectively, and are distributed
according to the MGD with k-dimensional mean vector µ1
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Fig. 1: Proposed method for SAR change detection in wavelet domain. The wavelet transform decomposes a sliding window
into multiple subbands. The subband coefficients are combined to form different vectors for the study of inter-scale and
inter-orientation dependences. KLD between pdfs of multivariate distributions is used to generate a change map.

and µ2 and k × k covariance matrix Σ1 and Σ2, then the
symmetric version of the KLD has the following form

KL(X1,X2) =
1

2

[
tr(Σ2

−1Σ1 + Σ1
−1Σ2)− 2k (4)

+(µ2 − µ1)t(Σ2
−1 + Σ1

−1)(µ2 − µ1)
]

B. KLD for the inter-scale dependence

The symmetric KLD of two sliding windows is defined as
the sum of similarity measures of each L-vector of the same
orientation

KL(X 1,X 2) = KL(H1,H2) +KL(V 1, V 2)

+KL(D1, D2) +KL(A1, A2) (5)

Where KL(H1,H2), KL(D1, D2), KL(V 1, V 2) and
KL(A1, A2) are calculated using the (4). In the case of the
subbands are assumed independent, the total similarity of two
blocks or two sliding windows are defined as
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KL(A1
j , A

2
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C. KLD for the inter-orientation dependence

The symmetric KLD of two sliding windows is defined as
the sum of similarity measures of each 4-vector of the same
scale

KL(Y1,Y2) =

L∑
j=1

KL(Y 1
j , Y

2
j ) (7)

In the case of the orientations of the same scale are assumed
independent, the total similarity of two sliding windows are
defined also by Eq. (6).

D. Total KLD

The total similarity of two blocks or two sliding windows
are defined as the sum of similarity measures of (5) and (7)

KL =
1

2

(
KL(X 1,X 2) +KL(Y1,Y2)

)
(8)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experiments with real data

To evaluate our proposed method, a pair of Radarsat images
acquired before and after the eruption of the Nyiragongo
volcano are used in this study. The volcano occurred in January
2002. In Fig.(2), we show two images before (a) and after
change (b) and a binary change map (c) produced using ground
measures [26]. It is worth noticing that these images have
undergone a series of image pre-processing such as filtering,
re-sampling, causing the modification of the local statistics of
the image. The ground truth data in Fig.(2).c is not perfect
due to the presence of a severe mis-registration caused by the
lack of a proper digital terrain model [26].

(a) (b) (c)

Fig. 2: Data and ground truth for the Nyiragongo volcanic
eruption of January 2002.

To obtain reliable results, a sliding window with size
{24, 32, 40, 48} is used for the input images (before and after
change). Each of these sliding windows is decomposed into
L = (1, 2, 3) scales using discrete undecimated stationary
wavelet transform (SWT) with a Daubechies filter bank (db1,
db2, db3, db4). For the sake of comparison, two models with
and without dependency are used in this study. The first model
is defined by (8) and based on the MGD, and the second
model is based on (6) and depends on GD. The GD and MGD
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are estimated with different window sizes. To evaluate the
accuracy of the change map independent of the thresholding
algorithm, the receiver operating characteristic (ROC) curve
is used and the area under ROC curve (AUC) is computed as
a performance measure. The ROC curve is the evolution of
the true positive rate (TPR) as function of false positive rate
(FPR) [21]. The area under curve (AUC) is a good indicator
of change. The larger the area the better the performance [21].

B. Results

The area under the ROC curve are shown in Table I.
At each window size, the best and the worst values are
highlighted in red and green, respectively. From this table,
we can draw the following general conclusions. First, it can
be clearly seen that multivariate distribution given by MGD
provides better performance than univariate distribution as
the GD for any window sizes, any scales and any filters.
Second, we can see that as the window size increases, the AUC
always increases. For a fixed window size, the AUC increases
as the number of scales increases. This can be explained
by the fact that the information residing in the dependence
between subbands improves the accuracy of the change map
and than can better characterized by a multivariate statistical
model than an univariate statistical model. We have also the
following particular notes. For a fixed window size and scale,
the AUC for MGDs and GDs decrease as the order of the
filters increases. This is explained due to the fact that the
correlation between the wavelet subbands decreases as the
filter order increases. Based on this table, we conclude that
the best window size and the best scale are 48 × 48 and
L = 3, respectively. For illustrative purposes, the change
detection image corresponding to the calculation of the total
KL divergence given by (8) is presented in Fig.3 for a window
size of 48× 48 and a scale value L = 3.

2

4

6

8

10

12

14

16

Fig. 3: Total KL computed using Eq. (8) of the change
detection image.

Scale Method dbn 24 32 40 48

1

MGD

db1 0.7947 0.8265 0.8395 0.8399
db2 0.7938 0.8252 0.8382 0.8386
db3 0.7929 0.8242 0.8380 0.8379
db4 0.7923 0.8234 0.8379 0.8366

GD

db1 0.7843 0.8152 0.8281 0.8287
db2 0.7833 0.8149 0.8277 0.8279
db3 0.7826 0.8140 0.8262 0.8266
db4 0.7820 0.8133 0.8281 0.8254

2

MGD

db1 0.7942 0.8267 0.8416 0.8494
db2 0.7939 0.8256 0.8405 0.8489
db3 0.7944 0.8251 0.8398 0.8482
db4 0.7948 0.8256 0.8396 0.8477

GD

db1 0.7846 0.8164 0.8310 0.8391
db2 0.7835 0.8153 0.8302 0.8384
db3 0.7828 0.8145 0.8296 0.8378
db4 0.7822 0.8138 0.8291 0.8374

3

MGD

db1 0.8071 0.8407 0.8485 0.8591
db2 0.8038 0.8419 0.8494 0.8606
db3 0.7987 0.8404 0.8501 0.8617
db4 0.7977 0.8374 0.8487 0.8621

GD

db1 0.7906 0.8265 0.8359 0.8473
db2 0.7894 0.8262 0.8348 0.8469
db3 0.7883 0.8259 0.8338 0.8466
db4 0.7875 0.8257 0.8329 0.8463

TABLE I: The Area Under Curve (AUC) for different window
sizes and different scales are measured for MGD and GD. The
best values are marked by red color and the worst by green
color.

V. DISCUSSION AND CONCLUSION

In this paper, a method for SAR change detection in
wavelet domain is proposed. It is based on MGD for modeling
the coefficient magnitude of the wavelet subbands. It takes
into account the dependency between subbands such as
the inter-scale dependence and inter-orientation dependence.
Wavelet transform is used to decompose the image into
multiple scales and orientations. The total Kullback-Leibler
divergence is the sum of the Kullback-Leibler of the inter-scale
and inter-orientation dependence. Our approach is evaluated
using different window sizes and different scales compared
with the univariate GD. Through the study, the MGD in
wavelet domain shows promising results since it takes into
account the correlation between subband comparing to the
conventional approach as the univariate Gaussian distribution.
Although the method performs slightly better than the
conventional approach, improvement can be achieved, first, by
including other multivariate distributions as the multivariate
generalized Gaussian distribution. Second, by extending the
study to polarimetric SAR (PolSAR) data to exploit the joint
modeling of the polarization channel correlation. We expect
that these additional data will enhance the change detection
task. Finally, by adding a third type of correlation: the
inter-polarization dependence, in order to use the information
embedded in the correlation between the polarization channels.
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