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Abstract—In real-world applications, images and videos used
in computer vision algorithms are often distorted due, e.g.,
to compression and transmission. As a result, they may lose
relevant information content, or they may deviate significantly
from the original data distribution used to train the machine task,
rendering the visual content practically useless with respect to
its initial purpose. Evaluating the ufility of an image for machine
tasks has received little attention so far in the literature. This
concept of utility is substantially different from the visual quality
typically used in image/video compression, as the latter is related
to the perception of the human visual system. In this paper, we
propose a definition of utility as the degree of confidence by
which a machine task is able to take a decision. In this context,
we propose a full-reference utility loss measure: we assume that
the decision on the pristine image is correct (reference), and we
measure the utility loss as the confidence reduction in the decision
due to a noisy input with respect to this reference. We apply this
general definition on two specific tasks, classification and object
detection, and we study practical solutions to predict utility, as
well as the ability of our utility measure to generalize across
tasks.

Index Terms—image utility for machines, machine perception,
task-based assessment, image utility assessment

I. INTRODUCTION

It is well known that the concept of visual quality for the
human visual system (HVS) is different from the quality of
an input image/video to perform a computer vision task [1]
[2]. For example, a machine-based task may produce the same
outcomes for two images with big differences in visual image
quality and vice versa. In real world scenarios, the distortion
introduced during acquisition and transmission impacts the
utility of images for the machine tasks, which are generally
trained on pristine examples [3]. Retraining the networks with
distorted images in this case is not only time-consuming
and unfeasible, but also an intrusive and a non-generalizable
solution. Instead, having a measure of utility could be used
as an optimization constraint by machine tasks [4] or as a
more generalized and non-intrusive solution for improving the
image utility and machine performance.

Existing image quality assessment methods have been de-
signed by modeling human perception, and are typically
trained on datasets with subjective mean opinion scores labels.
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Fig. 1: Histograms for different metrics with binary utility

Image quality in this context is defined in terms of either
the level of visual impairment in the image, or its perceptual
quality compared to a pristine reference [5]. This makes visual
quality metrics essentially unsuitable to predict image utility
for machines. Moreover, it is pertinent to mention here that
the concept of machine image utility assessment is not to
be confused with anomaly detection often used in relation
to Deep Learning (DL) methods. Anomaly detection methods
such as out-of-distribution (OOD) detection and adversarial
image detection are concerned with special cases only, whereas
the concept of image utility for machines is universal and
applies to normal application scenarios as given by examples
before. OOD images belong to the class of images that are
different to the training set, whereas adversarial images are
similar to training images but have intentional non-perceptual
perturbations to create mis-classification errors. None of these
two scenarios applies here. Fig. 1 illustrates how these other
notions are unsuitable for assessing image utility with a
simple example. For this example, a small set of images from
imagenet [8] validation data were selected, from which another
set was generated by compressing them at different bitrates.
Both these compressed and uncompressed images were then
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passed through a pretrained DL-based classification network.
Each plot in the figure consists of two histograms, where the
blue histogram represents those compressed images that are
given the same labels as their uncompressed versions and the
orange histogram shows the frequency of wrongly classified
images. Each plot shows a representative method from among
the quality assessment and anomaly detection class of methods
[S]-[7]. It can be seen from the plots that none of the existing
notions capture the concept of image utility for machines as
there is a large overlap between the two histograms in each
plot.

Therefore, in order to assess the image utility there is a
need to first formally define this concept and then based on
that to design an effective methodology for evaluating it. This
work is an initial contribution in this regard as we present the
notion of image utility for machines and a methodology for
its evaluation followed by exploring its use and effectiveness.

II. RELATED WORK

Recently, some attention has been given in understanding
the concept of machine perception and its differences from
human perception. Generally, this is being done either by
understanding how an input image affects the different parts
of the network or by studying the properties of images which
are suitable for the machines. For instance, in [9], the authors
have proposed to find the convolutional filters most affected
by the distortions introduced during image acquisition and
transmission, and then have proposed a correcting mechanism
for those. On the other hand, in [3], the authors have studied
the differences between human and Deep Neural Network
(DNN) classification performance for images distorted by blur
and noise. They have shown that humans outperform machine
based classifiers even when they are retrained using distorted
images. Besides these, some other works like [10], [11] have
also proposed image correction and recovery methods to
improve the outcomes of DL networks in case of distorted
images without retraining. Another interesting work [12] has
recently explored the concept of Just Noticeable Difference
(JND) for machine vision, whereby they have shown that
like for HVS, it is possible to find JND for machines also.
However, all of these works focus on single machine task i.e.
image classification and do not focus on evaluating the overall
image utility.

With regards to machine utility assessment, the most rele-
vant work has been done in [13] for videos, where authors
have named it as analytical quality and have only consid-
ered the classification task. In that work, the authors have
proposed to use a mean classifier opinion score (MCOS)
instead of Mean Opinion Score (MOS) for training quality
assessment networks. MCOS is evaluated using average of a
combination of the class confidence and class rank from 5
different classifiers. Then, they have used different thresholds
in different applications to filter out frames. However, in that
work they only focus on image classification and then use the
same MCOS for all other machine tasks. Contrary to that, in
this work we will first consider image utility for machines in

general, before providing a task-specific definition as done in
the next section.

III. IMAGE UTILITY FOR MACHINES

For a specific machine task like image classification, face
recognition, object detection etc., we can define image utility
in terms of the confidence in prediction (no-reference) or
change in prediction confidence from that of a pristine image
prediction (full-reference). Based on that, we first define here
image utility for machines in general terms below, followed
by task-specific definition.

A. General Definition

Let’s consider a pristine image I’ and a distorted image
I both of which have been passed through a DNN i for a
specific task. Let’s also consider S as the set of M possible
outcomes for the task, which also contains the ground-truth
for images I’ and T i.e. § = {S51,Ss,..Sp}- When an image
is passed through ¢, the output is a prediction P such that
P;(I) € S along with a set of confidence values associated
for each member of the outcomes set. If ¢ is the confidence
value assigned to the ground-truth when I’ is passed and ¢;
is the confidence value assigned to the ground-truth when [
is passed, then utility ; for the DNN ¢ can be defined as a
function of ¢} and ¢; as

Ui(I) = f(di, 9) (1)

If ¢7°¢ is the recognition confidence threshold below which
the prediction is rejected, we propose to define f(¢;, ¢,) as
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f(¢27¢;) = 1_ (¢/ — Q‘)TEC)
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The higher the value of this function, the higher the utility
value. For the case where the distorted image gives the wrong
prediction i.e. ¢; < ¢}, this becomes negative. If we have
a set of possible DNNs for a specific task, then image utility
for machines U/ can be defined as

Ul = OU) 3)

where O is some kind of operator like mean, max or majority
vote and U is a set of utility values of NV different DNNS i.e.

U(I) = {th(I),Us(I), ... Un(I)} 4)

B. Task-Specific Utility

It is possible to extend and simplify the general Eqgs.(1-3)
to any specific machine task, 7. In the following, we show
how this notion of image utility may be simplified for the two
most common machine vision tasks of image classification and
object detection.
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1) Image Classification: Let’s consider the simplest exam-
ple of image classification first with NV classifiers and consider
all images with wrong predicted class or f(¢;,¢;) < 0 as
having no utility and those with positive values as ’useful’.
Hence, the utility function for each individual network with
T = C becomes

L{(C)(I) )1, i P(I) = S(I) 5)
‘ N 0, otherwise

where P;(I) and S(I) are the predicted and the ground-
truth classes respectively. The combined utility from all the
networks in this case ¢(°)(I) can then be evaluated using
some kind of operator like majority voting.

2) Object Detection: Let’s consider another task of object
detection where 7 = OD. The utility of an object detector lies
in two aspects namely correct prediction of objects and their
correct localization. Hence, each outcome in the set S in this
case is a subset consisting of a label L and the localization box
Bie. S; = {L;, B;}. The ground-truth for an image may be
one or multiple of these outcome subsets. For L, we apply the
same condition of f(¢;, ¢}) < 0 for no utility and vice versa.
For correct localization we can use a threshold of 0.5 on its
associated confidence score ¢;,.. Let’s consider the simplest
case where ground-truth consists of a single possible outcome.
Hence, individual detector utility in this case becomes

ui(op) (1) = {

The combined image utility for object detection task can
then be obtained the same way as for classification.

It is not feasible or in any way useful to evaluate these
utility functions by passing the image through the inputting
network of the task. The real usage of this comes if we know
the utility of the image beforehand. Hence, there is a need to
predict value of this utility function for each input image by
having a utility assessment module. In the next section, we
propose one such assessment method.

1, if P;(I)=8() and ¢y > 0.5
0, otherwise

(6)

IV. MACHINE IMAGE UTILITY ASSESSMENT

For our proposed machine image utility assessment method,
we consider a two-class formulation consisting of "useful’ and
"non-useful’ labels as defined by the utility functions 2/(©)
and U(©P) resulting from combining outputs from Eq.(5)
and (6). These labels are generated using a standard DNN
like Inception-v3 [14] for classification and a standard object
detector like Faster R-CNN [15]. For classification, we also in-
clude here a threshold on the correct class softmax probability
(CCSP) in the definition. Hence, the "useful’ label is given to
an image whose predicted class is the same as the original
image with a CCSP exceeding a threshold T;. On the other
hand, any image which is wrongly classified by the DNN with
a CCSP below a threshold 77, is given a label ’non-useful’.
Similarly, for object detection, we add an additional constraint
of the Intersection over Union (IoU) value threshold. If at least
one of the boxes in the image is detected with an IoU value

of greater than and equal to 0.5, we consider it as an image
with utility 1. On the other hand, all those images for which
none of the boxes are detected with an IoU value of greater
than or equal to 0.5 are considered as images with utility 0.

To understand the labeling process, let us consider an image
I’ that has an associated ground-truth S(I'). In this work,
we consider the specific case of JPEG image compression.
In order to label the images, we first obtain the label of the
uncompressed image P(I’) using the labeling network. Then
we compress the image using JPEG compression to get I and
pass it through the same network to get its label P(I). For the
classification task, if P(I’) and P(I) are the same and also
match the ground-truth label S(I") with CCSP exceeding T,
I is given a utility label of 1 where utility label belongs to
one of the two classes in set {0, 1}. Here class O represents
a ’non-useful’ image and class 1 represents a 'useful’ image.
On the other hand, if P(I') = S(I') but P(I) is different
with CCSP less than 77, I is given a utility label of 0. This
way, we consider only the impact of distortion on utility.
Similarly, for the object detection if at least one of the many
predicted outcomes P(I’) and P(I) are the same and also
match the ground-truth label S(I’) with confidence value and
IoU both greater or equal to 0.5, it is given the utility value
of 1. All other images with no right labels or having lower
confidence scores or IoU values are given a utility label of
0. Finally, for combining the labels from multiple networks,
the images assigned utility 1 from all networks are given the
label 1, whereas all those with O assigned from all networks
are considered as utility 0.

Once the labels are generated, we train a binary utility
assessment network using these compressed images. In this
work, we propose to use a baseline Resnet-18 network [16]
for utility assessment. The loss function used during training
is the cross-entropy loss. The trained network can then be used
to identify the useful and non-useful images from test images.

V. EXPERIMENTAL RESULTS

Besides finding out the accuracy of our assessment network
for different tasks, we have evaluated our proposed utility
assessment framework with focus on two questions (i) Can
we use the utility evaluated for one network for all others in a
single task? and (ii) Can we use the utility evaluated for one
machine task for another (inter-task generalization)? We have
considered two machine tasks here namely image classification
and object detection.

For classification, we have used the Imagenet validation set
[8] (50000 images) to generate the JPEG compressed images
at 9 different compression ratios. For classification networks,
we have used three standard networks namely the Inception-
v3 [14], VGG-19 [17] and Densenet-121 [18]. For CCSP, the
two thresholds T and T, used were 0.9 and 0.1 respectively.
Once the labels were generated, we divided the dataset into
training and test set with a 80-20 ratio (around 200,000
training images and 50000 test images per class) ensuring that
the images in the two sets do not overlap. In order to balance
the images for the two utility classes, we also added images for
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Fig. 2: Impact of using the proposed utility assessment method trained for utility of (a) different classification networks on
accuracy of test classification networks and of (b) different object detection networks on mAP of test detection networks

TABLE I: Performance of utility assessment network trained
for utility of different classification networks

Classification Network for defining utility | Accuracy
Inception-v3 87.5%
VGG-19 84.2%
Densenet-121 91.2%
Inception+VGG+Densenet 93.3%

TABLE II: Performance of utility assessment network trained
for utility of different object detection networks

Object Detection Network for defining utility | Accuracy
Faster R-CNN Resnet-50 84.8%
SSD-300 VGG-16 81.3%
SSD-320 Mobilenet-v3 83.1%
SSD-300 + SSD-320 + Faster R-CNN 92.8%

utility O class using data augmentation techniques followed by
relabeling. Finally the Resnet-18 was trained using Stochastic
Gradient Descent method with a learning rate of 0.0001.

Similarly, for object detection we have taken the COCO
2017 validation set [19] (5000 images) and generated the
JPEG compressed images at 9 different compression ratios
from them. For carrying out object detection, we have selected
three common models namely Faster-RCNN [15], SSD-300
[20] and SSDLite-320 [21], [22]. The train-test ratio used
was again 80-20 (around 20000 training images and 5000 test
images per class) and images for utility O class added using
data augmentation for class balancing. The same network,
Resnet-18 was then trained for utility prediction using the
same hyperparameters.

A. Results from individual and combined networks

Table I shows the accuracy performance of our proposed
utility assessment network for different classification networks.
We can see that there are slight differences in performance of
the network when the classification network is changed for
defining utility. For individual networks, Densenet-121 gives
the best accuracy results of 91.2% followed by Inception with
87.5% and VGG-19 with 84.2%. We have also evaluated
the results for a combined utility evaluated from all these
networks using common predicted class. This resulted in a
better training than the individual ones as we obtained the
binary utility classification accuracy of 93.3%.

Similarly, Table II lists the accuracy of the utility assessment
network for different object detectors. Here again, we can see
that the combined utility defined as the common output from
different object detectors gives the best classification accuracy
of 92.8%. For prediction of utility for individual detectors,
the classification accuracy is much worse in this case with the
second best accuracy of only around 84.8% by the Faster R-
CNN Resnet-50 method. The proposed method gives the worst
performance for SSD-300 VGG-16 detector with classification
accuracy of only 81.8%.

B. Intra-task generalization across machine types (networks)

One of the fundamental benefits of the utility assessment
module is to be able to deploy it before any network to identify
the useful inputs only and filter out the rest or enhance them
before reuse. Ideally, any utility assessment method should be
independent of the classification network and work well for
all kinds of applications. To evaluate this generalization ability
of our utility assessment network for the classification task,
we train it for one classification network or a combination
of them and then observe the change in performance for
other networks after filtering out the images having O utility.
These other networks selected are AlexNet [23], ResNext-50
[24] and EfficientNet-b7 [25]. Similarly, for evaluating the
generalization for the object detection task, we train it for one
object detector or a combination of them and then observe
the change in performance for other detectors after replacing
the images with O utility with the uncompressed ones to allow
for mAP evaluation. The other object detectors used for this
experiment are Mask R-CNN [26], RetinaNet [27] and Faster
R-CNN MobileNet-v3 [15], [22]. We used subsets of imagenet
and COCO validation datasets with images compressed at
bitrates other than used for training for classification and
object detection respectively. Figure 2(a) shows how using the
utility network impacts the performance of other classification
networks with a clear improvement in accuracy in all the tested
networks. This implies that our proposed network generalizes
significantly well across different networks, although there
is still a big room of improvement to get the ideal results.
Similarly, Figure 2(b) illustrates the impact of using utility
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TABLE III: Training Impact for Classification Accuracies

Network Classification trained | OD trained
AlexNet 46.8% 46.0%
ResNext-50 66.3% 65.4%
EfficientNet-B7 65.8% 65.9%

TABLE IV: Training Impact for Object Detection mAPs

Network OD trained | Classification trained
Mask R-CNN 0.128 0.126
RetinaNet 0.128 0.125
FR-CNN MobileNet 0.164 0.161

network for the object detectors. Here, we can see that
mean Average Precision (mAP) values (though low due to
compression artifacts) increase when the utility network is
used although this increase is smaller when utility assessment
network is trained for multiple object detectors utility.

C. Inter-task generalization across machine tasks

In order to evaluate whether the utility prediction network
can be used globally when trained on one single task, we have
also evaluated the inter-task generalization. To do this, we used
the network trained for classification utility (from 3 combined
networks) and evaluated its impact on object detection task and
vice versa. Tables III and IV show the difference in accuracy
and mAP values for classification and object detection tasks
respectively. From the tables, we can clearly observe that only
negligible difference in values (around 2% or less) is observed
when utility training from one task is used to detect utility for
another task. Hence, this shows that our proposed framework
is generalizable across tasks.

VI. CONCLUSION

In this work, we have presented a formal specification and
definition of a very important concept of image utility for
machines for the very first time. We have further presented a
simple strategy for predicting this machine image utility using
training with outputs of multiple classification networks as
well as of multiple object detectors. Experimental results have
shown the effectiveness and generalization of our proposed
method. Hence, such a method of predicting image utility
for machines can not only be used in real-world applications
to improve outcomes where images are affected by common
distortions, but also for optimizing a machine task output
for another subsequent machine task. This work can serve
as an important first step in building more efficient machine
utility assessment methods and for developing algorithms and
networks optimized for machine perception. For future work,
we also plan to extend this work to include more distortions.
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