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Abstract—With deep neural networks (DNNs) involved in more
and more decision making processes, critical security problems
can occur when DNNs give wrong predictions. This can be
enforced with so-called adversarial attacks. These attacks modify
the input in such a way that they are able to fool a neural
network into a false classification, while the changes remain
imperceptible to a human observer. Even for very specialized
AI systems, adversarial attacks are still hardly detectable. The
current state-of-the-art adversarial defenses can be classified
into two categories: pro-active defense and passive defense, both
unsuitable for quick rectifications: Pro-active defense methods
aim to correct the input data to classify the adversarial samples
correctly, while reducing the accuracy of ordinary samples.
Passive defense methods, on the other hand, aim to filter out
and discard the adversarial samples.

Neither of the defense mechanisms is suitable for the setup of
autonomous driving: when an input has to be classified, we can
neither discard the input nor have the time to go for computa-
tionally expensive corrections. This motivates our method based
on explainable artificial intelligence (XAI) for the correction of
adversarial samples. We used two XAI interpretation methods to
correct adversarial samples. We experimentally compared this
approach with baseline methods. Our analysis shows that our
proposed method outperforms the state-of-the-art approaches.

Index Terms—explainable AI, neural networks, deep learning,
adversarial defense

I. INTRODUCTION

With ever-increasing computing power and data volume,
neural networks have gained much recognition over the past
years, enabling them to grow constantly in scale, accuracy,
and complexity. Neural networks are applied to a variety of
different fields getting more and more power of decision,
including medicine [1], economics [2], machine translation [3],
[4], speech recognition [5], [6], and knowledge graphs [7].

The main idea of this paper is to use XAI to correct the
malicious samples when they are detected. We intuitively
believe that XAI will inform us of the adversarial attacks.
This assumption leads us to the central insight of this article:
we demonstrate that modifying or removing the focus of XAI
can cause the malicious sample to return to the correct sample.
From this observation, we are optimistic that our method can

also defend against unknown attacks. We plan to release our
code, model, and data set for future work on this topic. In
summary, we have made the following contributions:

• To the best of our knowledge, we are the first one to
use XAI, namely iGOS (Integrated Gradients Optimized
Saliency), to correct adversarial prediction results.

• Our experiments show that our method is better compared
to most of the baseline methods

• Our method goes beyond detection, as it can continue to
predict and have a correct result while making the passive
method retain the adversarial example.

We are optimistic that our method can resist unknown attacks
because it obtained good results in the transfer adversarial
example experiment.

Fig. 1. The figure shows the motivation of our concept. We assumed to have
stable and powerful detectors which can detect whether an image is adversarial
or not. Our main goal is to correct the adversaries to have a correct prediction.

A. Adversarial attack

Even though extremely high accuracy neural networks have
surpassed humans in some areas, they are fragile and suscepti-
ble to small disturbances. The interference in these images and
voices is even imperceptible to human eyes and ears. This kind
of attack can make the network output wrong results with a
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high degree of confidence. Let f(·) be a trained deep network
and h(·) is human judgment. We assume that

f(x) = h(x)

Here, we give a formal definition according to [8]:
a) Definition: An adversarial example x′ is a normal

input x with a human-unperceived perturbation ϵ, that is x′ =
x+ ϵ, in other word, ∥x′ − x∥p ⩽ ϵ for some small ϵ ∈ R+.
∥x′ − x∥p is defined as the following Equation 1.

∥x⃗′ − x⃗∥ = p

√√√√ m∑
i=1

|(x′ − x)i|p (1)

more specifically, if x′ is an adversarial example, it holds:

h(x) = h(x′) ∧ f(x′) ̸= f(x′).

II. CONSIDERED THREAT MODELS

In our experiment, we consider a threat model with the fol-
lowing information: the attacker performs adversarial attacks
and tries to alter the classification output of our target model.
For this purpose, the attacker uses various state-of-the-art al-
gorithms. Furthermore, the added adversarial perturbations are
desired to be small enough to be indistinguishable for a human
expert, consistent with the standard definition of adversarial
examples. Finally, we consider a white-box scenario in which
the attacker performs simple attacks on the target model, which
means the attacker knows all information of the target model.

III. METHODOLOGY

XAI is a method that helps human to comprehend and
understand the results of deep learning. Therefore, we believe
that it can help us understand the misclassification of the
adversarial sample. Correcting these reasons can cause mis-
classification (in the image domain, it means specific pixels).
On the other hand, we can have the correct classification for
the adversarial sample. To prove our concepts, we choose two
interpretation methods: Intergradient-CAM and iGOS.

A. Intergradient CAM-based Defense

In Grad-CAM, we use the derivative to express the impor-
tance of the feature map. The usage of ordinary derivatives
can cause some problems. These two major problems are the
saturation region problem and the problem that the sensitivity
is not accurately equal to importance. We apply integrated
gradient to Grad-CAM and obtain Integrated Grad-CAM. We
found that inputting the original and the adversarial image of
the same image into Integrated Grad-CAM would result in
different key areas, as shown in Figure 2

Here, we assume that there exists a detector that accurately
classifies inputs into adversarial and benign samples. The
benign samples can be directly passed to the subsequent
classification model. The adversarial samples are then fed into
our defense network for correction.

First, we use Integrated Grad-CAM to identify the key areas
of the attack image that play a positive role in the attack label.

Original Image Adversarial Image

Fig. 2. Interpretation comparison using Integrated Grad-class activation
mapping (CAM) for the original and adversarial image to original label.

The interpretative ability of Grad-CAM computed for different
convolutional layers decreases significantly from the last layer
to the fore layer [9]. Hence, we chose the last convolutional
layer to compute the critical area that is the saliency map.

Second, we modify the different percentages of those key
areas in the adversarial image without interfering with the
important features for classifying the original image.

Third, we observe that the key area of adversarial image
to post-attack label usually does not overlap with the original
image’s key area with respect to the original label. Due to the
randomness of both methods, we perform this step multiple
times. The percentage of key areas is changed for a specific
dataset. We use two intuitive methods to modify the features:

• Randomly deleting the pixels.
• Generating blurring image of adversarial image using

Gaussian and randomly replacing the pixels with blurring
pixels.

Fig. 3. Example results of using CAM-based and modified-iGOS-based
method on an adversarial image.

Figure 3 presents experimental results using our proposed
methods.

Then, these modified adversarial images are fed into the
classification model. At last, the output results are statistically
analyzed to determine the final label.

In principle, the derived saliency map is relevant to the
target model, but the same image will have a different saliency
map for different models. Hence, our defense method uses
the qualities of the image and the nature of the classification
model.

The above steps can be summarized visually in Figure 4.
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Fig. 4. Integrated Grad-CAM-based defense overview: Given an image to
the detector to detect whether it is an adversarial sample or not. Suppose it
is a benign sample, input to Convolutional Neural Networks (CNN) directly.
If it is an adversarial sample, input to Integrated Grad-CAM to find the key
region, correct the image by randomly replacing the pixels with the Gaussian
blur image of the adversarial image and then input to CNN to get the correct
label.

B. iGOS based Defense

Qi et al. [10] proposed a more result-oriented method called
Integrated Gradients Optimized Saliency (I-GOS) approach,
for visualizing the deep networks. It is based on mask op-
timization and integrated gradients approach. The mask ap-
proach uses optimization techniques to generate heatmaps for
finding the area that maximally decreases the neural network
output and the integrated gradient approach claims that the
heatmaps can reflect the output changes. The mask approach
constructs a mask M as the heatmap to perturb the input Io
which is optimized by solving the following objective function
in equation 6. The mask is a coefficient matrix that fuses
the base image and the interpreted image and has values
of every element in the range [0,1]. The coefficients in the
mask are sorted to filter out the essential pixel positions and
obtain the final interpretive result. The Gaussian blur of the
original image is selected as the base image instead of the
plain black image as the latter creates new strong edges that
can significantly impact the neural network model and can
even obscure the important features. The objective function is
provided in the following equation:

argmin
M

Fc(Io,M) = fc(ϕ(Io,M)) + g(M)

where g(M) = λ1∥1−M∥1 + λ2TV (M),

ϕ(Io,M) = Io ⊙M + Ĩo ⊙ (1−M),

0 ≤ M ≤ 1.

(2)

where M is the mask, ϕ(Io,M) is the fused figure, fc is the
neural network output on class c, Ĩo is the baseline image with
a low score on class c and having the same shape as the input
image, g(M) is the penalty term. The first term λ1∥1−M∥1
of g(M) aims to make the original image occupy as much
weight as possible in the fusion figure, and the second term
λ2TV (M) is a total variation norm used to make the mask
as smooth as possible. The gradient descent method is chosen
for the optimization as it is one of the most common methods.
The gradient used here is the integrated gradient as it provides
a better direction and points towards the global optimum. The
Goldstein-Armijo condition is used to determine the step size.

First, to use iGOS for adversarial defense, we have to
modify the objective function of original iGOS by removing

two unnecessary penalty terms since they make the interpre-
tation region too smooth and small. To defend using this
method, we want to extract essential pixels instead of area.
Furthermore, in the original iGOS method, there is no precise
limit on the number of iterations, which is an artificially
selected parameter. We find that many iterations can destroy
the important features of the original image, and if it is
too small, it may decrease the defense effect. Therefore, we
limit the number of iterations by controlling the reduction of
probability values.

Second, we use no-penalty iGOS to generate mask values
M of the adversarial example Ia. We compute the inner
product of Ia and M to have our first term (Ia ⊙M ).

Third, we use Gaussian to blur the whole adversarial image,
namely Ig . By using inner product, we have the second term
(Ig ⊙ (1−M))

Finally, we correct our adversarial image ϕ by adding first
term and second term, more formally:

ϕ(Ia,M) = Ia⊙M + Ig ⊙ (1−M) 0 ≤ M ≤ 1 (3)

The above steps can be summarized visually in Figure 5.
In addition, we combine iGOS and JPEG-compression

methods to have more experiment results, since compressing
the image with Jpeg in advance can remove the high-frequency
noise in the adversarial image.
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Fig. 5. Given an image to the detector to detect whether it is an adversarial
sample or not. Suppose it is a benign sample, input to CNN directly. If it
is an adversarial sample, generate Gaussian blur image, input both to iGOS
to obtain mask, fuse the adversarial image and the Gaussian blur image by
mask, then input to CNN to get the correct label. Notice that the mask size
M is the same as Ia and Ig

IV. EXPERIMENT AND RESULT

A. Selected Attack Methods
We defined our threat model in II. To validate the defense

method more effectively, we selected eight attack methods and
two metrics. They are FGSM L2, FGSM L∞ [11], BIM L2,
BIM L∞ [12], PGD L2, PGD L∞ [13], CW L2 [14].

B. Dataset
Three public datasets are used in this thesis, Mnist [15],

Cifar10 [16], and Mini-Imagenet, Mini-Imagenet is generated
by selecting fifteen classifications from the ImageNet [17]
Large Scale Visual Recognition Challenge (ILSVRC) 2012-
2017 image classification and localization dataset [18]..
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C. Target Model - Classification Model

In both Mnist and Cifar10, we used simple CNN. Residual
Network (ResNet) [19] is used for our Mini-ImageNet. Table I
presents the classifier in detail.

TABLE I
THE TRAINING PARAMETERS AND FINAL ACCURACY

MNIST Cifar-10 Imagenet

Architecture Simple CNN Simple CNN ResNet
Optimization algorithm Adam Adam Adam

Learning rate 10−4 10−2 10−4to10−7

Batch size 128 128 38
Epochs 99 39 59

Test accuracy 99.5% 82.6% 81.0%

D. Baseline method

Our defense method is compared with other defense meth-
ods to verify its effectiveness. This paper chooses four baseline
methods: Autoencoder, Jpeg compression, full image Gaussian
blur, and full image random deletion.

E. Experimental Results

We compare our experimental results with baseline meth-
ods. First, we summarize their defense success rates in Ta-
ble II. In the three datasets, it shows that iGOS-based de-
fense has the highest defense success rate under all attack
methods and far exceeds baseline under most attack meth-
ods. Unfortunately, CAM-based methods do not offer better
performance than baseline. The possible reason is that each
image has its own best intensity and percentage. Although
such a set of parameters exists for most images that can be
corrected with a very high probability, these regions do not
overlap. Observing many images similar to Figure 6 shows
that this set of parameters is related to the original image
classification. Otherwise, no uniform pattern can be found for
these regions. In particular, the performance is even worse on
Cifar10 due to the high probability that Grad-CAM makes a
wrong interpretation. Besides, we find that during the CAM-
based experiment, adversarial images and original images have
different focus hotspots. Different classifications have different
sensitivity to different intensities and percentages. It is verified
that the interpretation performance of IG-GradCAM is indeed
stronger than that of GradCAM.

In addition, we want to know the effect of modifying the
key area in the original image on the classification results,
so we did the same operation for the original image as
shown in Figure 7. Comparing the two sub-figures a) and b)
in Figure 7, it is evident that the original image has higher
stability to Gaussian blur replacement than direct deletion.
Hence, we conclude that method 1 has better performance
than method 2. This may be because direct pixel deletion
will produce many black borders. These borders will seriously
destroy or obscure the features necessary for classification
for both the adversarial and original images. However, this
is out of our research scope, since we assume we have strong

Image 1 Image 2

Image 3 Image 4

Image 1 Image 2

Image 3 Image 4

a) Adv-image Gaussian blur b) Adv-image Delete

Fig. 6. a) Examples of contour plots of the accuracy of adversarial images, of
which Gaussian blur replaces a percentage of pixels in key areas. b) Examples
of contour plots of accuracy of which deletes a percentage of pixels in key
areas. The horizontal axis is the intensity of heatmap, which controls the key
area size.

detectors, which can determine if an input is an adversarial
example.

Image 1 Image 2

Image 3 Image 4

Image 1 Image 2

Image 3 Image 4

a) Ori-image Gaussian blur b) Ori-image Delete

Fig. 7. a) Examples of contour plots of accuracy of original images, of which a
percentage of pixels in key areas are replaced by Gaussian Blur. b) Examples
of contour plots of accuracy of original images, of which a percentage of
pixels in key areas are deleted. The horizontal axis is the intensity, which
controls the size of the key area. The vertical axis is the percentage

V. CONCLUSION

In practice, we can find several scenarios where the adver-
sarial samples should not be discarded or kept in the queue
waiting for human intervention. The automated driving system
is one such example where we need to correct the wrong
samples immediately to avoid any safety-related issues. In
this paper, we innovatively used the interpretive method for
adversarial defense, or more specifically, for the correction of
adversarial examples. To the best of our knowledge, this is the
first paper using XAI methods to correct adversarial inputs.
We verified the wide adaptability and good performance of
the iGOS-based defense method during our experiments with
various attack methods. The accuracy of the defense under
various attacks exceeds the baseline methods. Generally speak-
ing, iGOS-based methods outperform CAM-based methods
and other baseline methods. Finally, we hope that our method
can inspire more research in this direction.
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