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Abstract—We propose a framework for intrinsic image 
decomposition using a single image captured under multiple 
colored lights. Our method first estimates the illumination, and 
then calculates the reflectance based on the retinex theory. For 
estimating the illumination, we use the depth, illuminant color, 
and illuminance estimated from the input image. We then 
demonstrate the validity of our method on CG and real image 
datasets. 
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I. INTRODUCTION 
 Illumination is composed of illuminant color and shading, 
and reflectance is an intrinsic color that is invariant to 
illumination conditions. Both illumination and reflectance 
are useful for many computer vision algorithms, such as 
those for segmentation, object detection, shape restoration, 
color constancy, relighting, and recoloring. Several intrinsic 
image decomposition methods that can divide an input image 
into reflectance and illumination components have been 
proposed. 

Conventional intrinsic image decomposition methods can 
be classified into three approaches: methods based on deep 
learning [1,2,3,4,5,6], methods that require multiple image 
inputs [1,7,8], and methods that require user assistance [9]. 
Because these methods assume that input images are 
captured under white light or sunlight, they are not suitable 
for scenes under complex lighting conditions such as 
multiple colored lights. 

This study proposes a framework for estimating 
illumination and reflectance from a single RGB image 
captured under multiple colored lights. In recent years, 
because modulable color LEDs, such as Philips Hue, have 
become widespread, it is necessary to use computer vision 
techniques for estimating illumination and reflectance in 
scenes with temporal and spatial lighting color changes. Our 
method is valid in these cases because it estimates the 
intrinsic image from a single RGB image. 

To estimate the illumination, our method uses depth, 
illuminant color, and illuminance, which are estimated from 
an input image. The depth was estimated using the boosting 
monocular depth [10] method. It is a method for estimating 
the depth of a scene from a single image based on the 
difference in the output characteristics of the depth 
estimations according to the resolution of the input image. 

The illuminant color was estimated by spreading the 
color of the sparse illuminant color map estimated by gray 
pixels [11] according to the estimated depth. We used a 
method developed in a previous study [11] for estimating the 
illuminant color using the information of achromatic pixels 

detected according to the illuminant-invariant measurement 
in color-biased images. 

The illuminance was estimated by merging the mean 
illuminance value with the estimated shading value. The 
illuminance map was estimated based on the assumption that 
the maximum value of the RGB channels represents the 
illuminance in [12]. Subsequently, [13] estimated the 
illuminance map by reducing the shading component from 
the results of [12] with structural information. In this study, 
we estimated the shading from the difference between Max-
RGB [12] and the illuminance estimation in Low-light Image 
Enhancement via Illumination Map Estimation (LIME) [13]. 

 
Fig.1. Workflow of our method. The image is the correct CG 
image. 

 

 
Fig.2. Comparison of illuminance estimation results by 
LIME and Max-RGB. Left: input image. Middle: 
illuminance estimation result by LIME. Right: illuminance 
estimation result by Max-RGB. 
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II. METHOD 
Retinex theory [14] indicates that pixel values 𝐼𝐼  are 

composed of illumination 𝐿𝐿 and reflectance 𝑅𝑅 as follows: 
𝐼𝐼𝑐𝑐(𝑥𝑥) = 𝐿𝐿𝑐𝑐(𝑥𝑥) ∙ 𝑅𝑅𝑐𝑐(𝑥𝑥), 𝑐𝑐 ∈ {𝑟𝑟,𝑔𝑔, 𝑏𝑏}, (1) 

 
where 𝐼𝐼𝑐𝑐(𝑥𝑥) is the pixel value at location 𝑥𝑥 in color channel 
𝑐𝑐 . Our method calculates the reflectance by dividing the 
input image by the illumination as 

 
𝑅𝑅𝑐𝑐(𝑥𝑥) = 𝐼𝐼𝑐𝑐(𝑥𝑥)/(𝐿𝐿𝑐𝑐(𝑥𝑥) + 𝜀𝜀), 𝑐𝑐 ∈ {𝑟𝑟,𝑔𝑔, 𝑏𝑏}, (2) 

 
where 𝜀𝜀 is a very small constant to avoid a zero denominator. 

The flow of the proposed method is shown in Fig. 1. The 
illumination map was estimated using depth, illuminant 
colors, and illuminance, which were estimated from a single 
input image. 

Because conventional illuminant color estimations 
estimate sparse illuminant color maps, a spreading method 
is necessary to estimate the illuminant color of all pixels. 
Our method uses the conjugate gradient method to spread 
the colors of the sparse illuminant color map to all the pixels 
along the structure of the depth map. 

We estimate the gradient of the illuminance using the 
difference between the illuminance estimation in [12] and 
[13], and then calculate the illuminance by adding the 
gradient and the mean of the illuminance that is set 
experientially. 

The Max-RGB [12] method uses the maximum RGB at 
each pixel as illuminance, as shown in (3). Therefore, it is 
not possible to distinguish between black objects and dark 
areas in the scene. 

 
𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅  (𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚( 𝐼𝐼𝑐𝑐(𝑥𝑥)), 𝑐𝑐 ∈ {𝑟𝑟,𝑔𝑔, 𝑏𝑏}. (3) 

 
The illuminance estimation in LIME [13] improves the 

illuminance estimated by Max-RGB [12] using the structure 
of the scene. Because its result is balanced in the local region, 
it is similar to the illuminance estimated by [12] for each 
pixel (Fig. 2). Therefore, by considering these differences, 
the relative shading of the scene can be obtained as the 
gradient of the illuminance. Because the relative shading 
values are distributed around zero, the illuminance map is 
calculated by adding the mean illuminance value to the 
relative shading, as shown in (4). 

 
𝑌𝑌(𝑥𝑥) = 𝑌𝑌𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝑥𝑥) − 𝑌𝑌𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(x) + 𝑌𝑌𝑃𝑃, (4) 

 
where 𝑌𝑌(𝑥𝑥) is the illuminance at location 𝑥𝑥, and the mean 
illuminance value 𝑌𝑌𝑃𝑃 is set experientially. In this study, it is 
the mean value of the luminance of the input images in the 
experiments in the CG image dataset and a fixed value (50% 
of the range) in the real image dataset. 

The illuminant color map is smooth in the local regions, 
regardless of texture, such as the depth map representing the 
structure of the scene. In the 𝑌𝑌𝑌𝑌𝑌𝑌  color space of the 
illuminant color map, the color difference 𝑉𝑉 of a pixel is 
expressed as the weighted mean of the color differences 𝑈𝑈 of 
the surrounding pixels. Therefore, we minimized the 
difference between the color difference of a pixel and the 
color difference of the surrounding pixels as follows: 

𝐽𝐽(𝑈𝑈) = ��𝑈𝑈(𝑥𝑥) − � 𝑤𝑤𝑥𝑥𝑥𝑥𝑈𝑈(𝑠𝑠)
𝑠𝑠∈𝑁𝑁(𝑥𝑥)

�
2

𝑥𝑥

, (5) 

 
where 𝑥𝑥 and 𝑁𝑁(𝑥𝑥) are the locations of the target pixel and 
its neighboring pixels, respectively. 𝐽𝐽(𝑉𝑉)  was calculated 
using the same equation. 𝑤𝑤𝑥𝑥𝑥𝑥 is the weight whose sum is 1, 
and is expressed in (6). 
 

 𝑤𝑤𝑥𝑥𝑥𝑥 =
1 + (𝐷𝐷(𝑟𝑟) − 𝜇𝜇𝑥𝑥)(𝐷𝐷(𝑠𝑠) − 𝜇𝜇𝑥𝑥)/𝜎𝜎𝑥𝑥2

𝑊𝑊𝑥𝑥
, (6) 

 
where 𝜇𝜇𝑟𝑟  and 𝜎𝜎𝑟𝑟  represent the mean and variance of the 
depth map at the pixels surrounding location 𝑥𝑥 , 𝐷𝐷  is the 
depth, and 𝑊𝑊𝑥𝑥  is the sum of 𝑤𝑤𝑥𝑥𝑥𝑥  at location 𝑥𝑥  for 
normalization. The difference between the different signals 
of different pixels with similar depths is also reduced by 
these weights. 

Solving (5) with the conjugate gradient method, the 
given illuminant colors are spread to areas where the depth 
gradient is small and are stopped at boundaries where the 
depth gradient is large, such as the edges of structures. The 
illumination map is obtained by assigning the illuminance 
map calculated by (4) as the luminance of the illuminant 
color that is colored along the structure. 

III. RESULTS 
In the evaluation experiment, we compared the estimated 

illumination map and separated reflectance with the ground 
truth on the CG image dataset and the real image dataset. 
The dataset was developed in-house. 

The illumination map was evaluated using angular error, 
and the reflectance was evaluated using both angular error 
and color difference in CIE DE2000 [15]. Angular error is a 
measurement used to evaluate illuminant color estimation 
against the ground truth, where a smaller angle indicates 
higher accuracy. The angular error is defined in (7). 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑒𝑒𝑔𝑔𝑔𝑔

∥ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∥∥ 𝑒𝑒𝑔𝑔𝑔𝑔 ∥
� , (7) 

 
where 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the RGB vector of the estimated color and 𝑒𝑒𝑔𝑔𝑔𝑔 
is the RGB vector of the ground truth. 

CIE DE2000 is a criterion based on the Euclidean 
distance in the 𝐿𝐿∗𝑎𝑎∗𝑏𝑏∗ color space with a correction to bring 
it closer to human visual evaluation. 

Because CG images have ground truth, we used all pixels 
for evaluation. In real images, the illuminant colors were 
evaluated using the average colors of the six achromatic 
patches of the color chart in the image as the ground truth, 
and the reflectance was evaluated using the reflectance of all 
patches of the color chart as the ground truth. 

A. Dataset 
The CG image dataset (Fig.3) consists of 48 scenes with 
different lighting conditions, combining 12 illuminant colors, 
their correct illumination maps, and the correct reflectance. 
These were created through ray-tracing rendering using 
Blender's cycles renderer. The reflectance of the objects in 
the scene are coated with the color of the chromatic patches  
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Fig.3. Examples of images in the CG image dataset. 
Top: scenes under multiple colored lights. Bottom: 
illumination maps. 
 

 
Fig.4. Examples of images in the real image dataset. 

 

 
Fig.5. Example of the experimental results for the CG image 
dataset. Fig. 5(3) is the correct illumination map to compare 
with Fig. 5(4). Fig. 5(7) is the correct reflectance to compare 
with Fig. 5(8). 

 

 
Fig.6. Examples of the result of extracting reflectance with 
the correct illumination map. Top: input image. Middle: 
correct illumination maps. Bottom: reflectance extracted 
with the correct illumination map in the middle row. 

 

of the Macbeth color chart, in which their colors are evenly 
distributed to all objects. The wall color in the scene was set 
to 18% gray to make the illuminant colors easier to visualize. 

The real image dataset (Fig. 4) consists of 12 images 
containing the scenes under multi-colored lights. We used 
Philips Hue Go as the colored lights. The scene has color  

Table 1. Mean statistics of angular error at each pixel for the 
estimated and the correct illumination map. 

 
 

Table 2. Mean statistics of angular error and color difference 
at each pixel for the extracted correct reflectance. 

 
 

Table 3. Mean statistics of angular error and color difference 
at each pixel for the reflectance extracted with the correct 
illumination map (Fig. 6) instead of the estimated 
illumination map and the correct reflectance as a comparison 
to Table 2. 

 
 

charts on the left and right and a ball and building blocks at 
the center. A color chart was placed in the scene because it 
had the correct reflectance used in the evaluation. The scene 
was photographed without any external light. 

B. Results of the CG image dataset 
Fig. 5 shows an example of the experimental results for 

the CG image dataset. Fig. 5(3) shows the correct 
illumination map for comparison with Fig. 5(4). Fig. 5(7) 
shows the correct reflectance for comparison with Fig. 5 (8). 

The statistics for the results of the evaluation experiment 
are presented in Tables 1–3. Table 1 lists the mean statistics 
of the angular error at each pixel for the estimated and 
correct illumination maps. Table 2 presents the mean 
statistics of the angular error and color difference at each 
pixel for the extracted and correct reflectance. Table 3 shows 
the mean statistics of the angular error and color difference at 
each pixel for the reflectance extracted with the correct 
illumination map instead of the estimated illumination map 
and the correct reflectance as a comparison to Table 2. The 
angular error values in Table 3 are the lower limit values for 
this method based on the retinex theory. 

The values in the tables are the means of the statistics of 
the criteria for all pixels for the 48 CG image dataset. The 
trim-mean is the mean of the middle 50% of the results, 
sorted results of the evaluation on all pixels of each image, 
and excluding the results of the top 25% and bottom 25%. 
The means of the excluded top 25% and bottom 25% are 
shown in the top 25% and bottom 25% means, respectively. 

C. Results of the real image dataset 
Fig. 7 shows an example of the experimental results for a 

real image dataset. Fig. 7(3) shows the average colors of the 
six achromatic patches of the color chart in the input image. 
Fig. 7(8) shows the average color of the color patches in Fig. 
7(7). Fig. 7(9) shows the correct colors for the color patches. 

The statistics for the results of the evaluation experiment are 
presented in the Tables 4–5. Table 4 shows the mean 
statistics of the angular error and color difference for each 
color patch for the extracted reflectance and correct  

median mean trim-mean top 25％ mean bottom 25％ mean

Angular error 5.8757 7.6560 6.2382 2.4869 15.6608

median mean trim-mean top 25％ mean bottom 25％ mean

Angular error 9.2039 11.9193 9.6705 3.4618 24.8745

Color difference 21.4909 22.6873 21.3231 9.0581 39.0451

median mean trim-mean top 25％ mean bottom 25％ mean

Angular error 5.6971 7.8710 6.1619 1.6021 17.5582

Color difference 20.4332 21.7530 20.8906 11.6209 33.6099
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Fig.7. Example of the experimental results for the real 
image dataset. Fig. 7(3) is the average color of the six 
achromatic patches of the color chart in the input image. Fig. 
7(8) is the average color of the color patches of Fig. 7(7). 
Fig. 7(9) is the correct color of the color patches. 
 
Table 4. Mean statistics of angular error and color 
difference of each color patch for the extracted reflectance 
and the correct reflectance. 

 
 
Table 5. Mean statistics of angular error and color 
difference of each color patch for the reflectance extracted 
with the correct illumination map instead of the estimated 
illumination map and the correct reflectance for the CG 
image dataset as a comparison to Table 4. 

 
 
reflectance. Table 5 shows the mean statistics of the angular 
error and color difference for each color patch for the 
reflectance extracted with the correct illumination map 
instead of the estimated illumination map and the correct 
reflectance for the CG image dataset, as a comparison to 
Table 4. 

D. Consideration 
We considered the trends of images with high or low 

evaluation values through an evaluation experiment. 

Fig. 8 and Fig. 9 show examples with high and low 
evaluation values of the CG image in terms of angular error, 
respectively. When the hues of the left and right lighting 
colors were close, images of the scenes illuminated by high 
perception sensitivity illuminant colors, such as green, 
tended to have high evaluation values. Conversely, images of 
scenes illuminated by low-perception sensitivity illuminant 
colors such as purple tended to have low evaluation. This is 
because of the small difference between the color of the 
background area of the reflectance and the correct 
reflectance. Note that high perception sensitivity indicates 
high luminance in the images. In addition, when the hues of 
the left and right illuminant colors were far, the evaluation 
values tended to be higher because the color mixing 
decreased saturation and increased the luminance of the 
illuminance colors in the images, which increased the mean 
illuminance value added in (4). 

Fig. 10 and Fig. 11 show examples with high and low 
evaluation values of the CG image in the CIE DE2000, 

respectively. When the hues of the left and right lighting 
colors were similar, images of the scenes illuminated by 
illuminant colors with hues ranging from red to purple 
tended to have high evaluation values. Conversely, images of 
scenes illuminated by high-luminance illuminant colors, such 
as green, tended to have low evaluation values. This is 
because of the small color difference between the color of 
the background area of the reflectance and that of the 
background area of the correct reflectance. In addition, when 
the hue distance between the left and right illuminant colors 
was large, the evaluation values tended to be lower because 
the color mixing decreased saturation and increased the 
luminance of the illuminance colors in the images, which 
increased the mean illuminance value added in (4). 

There is an inverse trend between the angular error and 
color difference in the evaluation value for the hue distance 
of the two colored lights. When there is a difference in 
luminance of the reflectance, the color difference also 
becomes large because the color difference evaluates not 
only colors, such as angular error, but also the luminance of 
colors. However, the angular error is not affected. To avoid 
increasing the color difference, we should modify the 
calculation of the mean illuminance 𝑌𝑌𝑃𝑃 . Specifically, it is 
necessary to apply not only the offset, such as 𝑇𝑇𝑃𝑃 but also the 
linear conversion such that the gradient of the illuminance 
matches the shade of the input image to improve the 
accuracy. 

In the case of misestimation of the illuminant color, the 
evaluation was low in terms of both angular error and color 
difference. The accuracy of the estimated illuminant colors 
significantly affected the results. This was also the case in 
the experiment that used real images. 

IV. CONCLUSION 
Illumination is composed of illuminant color and shading, 

and reflectance is an intrinsic color that is invariant to 
illumination conditions. Conventional intrinsic image 
estimations can be classified into three approaches: methods 
based on deep learning, methods that require multiple image 
inputs, and methods that require user assistance. Because 
these methods assume that input images are captured under 
white light or sunlight, they are not suitable for scenes under 
complex lighting conditions such as multiple colored lights. 

We proposed a framework for intrinsic image estimation 
from a single image captured under multiple colored lights. 
Our method first estimated the illumination and then 
calculated the reflectance based on retinex theory. To 
estimate the illumination, our method used the depth, 
illuminant color, and illuminance, which were estimated 
from an input image. We then demonstrated the validity of 
our method on the CG and real image datasets.  

The results of the evaluation experiment show that there is 
an inverse trend between the angular error and color 
difference in the evaluation value for the hue distance of the 
two colored lights. To avoid increasing the color difference, 
we modified the calculation of the mean illuminance, 𝑇𝑇𝑃𝑃. To 
improve the accuracy, it is necessary to apply not only the 
offset, such as 𝑇𝑇𝑃𝑃 but also the linear conversion so that the 
gradient of the illuminance matches the shade of the input 
image.

median mean trim-mean top 25％ mean bottom 25％ mean

Angular error 12.0145 13.1008 12.2855 3.8371 23.9951
Color difference 14.2243 14.2424 14.2353 6.5602 21.9386

median mean trim-mean top 25％ mean bottom 25％ mean

Angular error 10.0341 11.4563 10.1836 2.2343 23.2240
Color difference 17.8175 17.6386 17.6122 10.0737 25.2565
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Fig.8. Examples with a high evaluation in angular error. 
Numbers in parentheses are hues of illuminant colors. Left: 
input image. Middle: illumination map. Right: reflectance. 

Fig.9. Examples with a low evaluation in angular error. 
Numbers in parentheses are hue of illuminant colors. Left: 
input image. Middle: the illumination map. Right: the 
reflectance. 

 

  
Fig.10. Examples with a high evaluation in color difference. 
Numbers in parentheses are hues of illuminant colors. Left: 
input image. Middle: illumination map. Right: reflectance. 

Fig.11. Examples with a low evaluation in color difference. 
Numbers in parentheses are hue of illuminant colors. Left: 
input image. Middle: the illumination map. Right: the 
reflectance. 
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