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Abstract—Audiovisual Speech Recognition (AVSR) is a popular
research topic, and incorporating visual features into speech
recognition systems has been found to deliver good results. In
recent years, end-to-end Convolutional Neural Network (CNN)
based deep learning has been widely utilized. However, these
often require big data and can be time consuming to train. A
lot of speech research also tends to focus on English language
datasets. In this paper, we propose a lightweight optimized
and automated speech recognition system using Gabor based
feature extraction, combined with our Audiovisual Mandarin
Chinese (AVMC) corpus. This combines Mel-frequency Cepstral
Coefficients (MFCCs) + CNN Bidirectional Long Short-term
Memory (BiLSTM) Attention (CLA) model for Audio Speech
Recognition, and low dimension Gabor visual features + CLA
model for Visual Speech Recognition. As we are focusing on
Chinese language recognition, we individually analyse initials,
finals, and tones, as part of pinyin speech production. The
proposed low dimensionality system achieves 88.6%, 87.5% and
93.6% accuracy for tones, initials and finals respectively at char-
level, 84.8% for pinyin at word-level.

Index Terms—Audiovisual, Speech Recognition, Chinese, Ga-
bor Filter

I. INTRODUCTION

Audiovisual Speech Recognition (AVSR) is regarded as a
robust speech recognition method. Many recent AVSR systems
[1]–[5] show improved performance on large English language
datasets. However, research using Chinese datasets is much
more limited [6]. For visual speech recognition specifically, a
number of recently developed neural network based methods
can produce state-of-the-art performance on both English and
Chinese datasets, including Assael et al. [7], Chung and
Zisserman [8] used English datasets, and Zhao et al. [9], Ma et
al. [10] [11] and Yuan et al. [12] focused on a Chinese dataset.
These used convolutional layers to extract lip features, and fed
them into a recurrent neural network, an attention architecture
[8], or transformer architecture [10]. However, these networks
produce autoencoded features that are non-intuitive for humans
to understand, and have high computational cost and dataset
requirements. The Chinese language recognition models also
generally consider pinyin as a whole, without focusing on the
individual language components (initials, finals, and tones).

Another option is to consider more ‘classical’ methods,
which follow two steps: feature extraction and feature recog-
nition. For extraction methods such as Active Appearance
Models (AAM), Discrete Cosine Transformation (DCT), and
Gabor filters. Saudi et al. [13] summarised the benefits of
Gabor filters: 1. they are insensitive to different patterns in
the spectro-temporal representation of the visual signal, 2.
they minimize the product of their standard deviation in both
frequency and time domain, 3. they have been successfully
used in different applications [14] [15]. Horizontal Gabor
features are arguably a match to psychological models of
human face recognition, and have been found to be a reliable
visual feature extraction method [16]. Previous research [15]
proposed a handcrafted Gabor-based VSR system with good
initial results. For recognition, many approaches have been
proposed, with LSTM networks [17] and the bidirectional
LSTM (BiLSTM) [18] widely used. Another architecture,
Inception-ResNet, which combines the Inception CNN module
with residual connections, was also successfully used in recent
Chinese lipreading work [15]. Recently, attention mechanisms
have also been employed for focusing on interactive informa-
tion from the key frames in temporal sequences [8].

The CNN BiLSTM Attention (CLA) model [19] has been
used for time series prediction, and is suited to our research
needs. Therefore, in this paper, a lightweight AVSR system
is proposed. For VSR, an automated Gabor based lip feature
extraction system with the CLA model has been used for fast
lip feature extraction and learning the hidden connections in
spatiotemporal information, with attention weights introduced
for expressing the importance of key frames. For Automatic
Speech Recognition (ASR), Mel-frequency Cepstral Coeffi-
cient (MFCC) features and the CLA model are utilized to
extract and recognize audio features.

There are several key contributions of this paper. Firstly,
an improved fully automated Gabor-based feature extraction
system is proposed, using Bayesian optimization to identify
Gabor hyper parameters, with good results. We also demon-
strate that we can improve on these by implementing decision
(late) fusion to produce better results than a single modality.
Our Gabor-based features, despite being lightweight, and with
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a lower dimensionality than CNN features, and far quicker
to train, can deliver results equivalent to using a full CNN
autoencoder approach, meaning that applying Gabor features
for AVSR is effective. We also separately analyse performance
for Chinese pinyin, initials, finals, and tones to investigate
detailed lipreading performance.

II. VISUAL SPEECH RECOGNITION

Geometric features could arguably be seen as a less “fash-
ionable” approach than using CNN based inputs, and yet, a
Gabor wavelet transform is a fast and lightweight approach
for extracting detailed mouth region measurements without
the need for any detailed mouth modelling [16]. We have
previously demonstrated a fast and reliable handcrafted system
which delivers good results [15]. However, the Gabor parame-
ters needed to be manually defined to extract precise geometric
features. This is a general limitation with the ‘handcrafted’
approach in comparison with deep learning models, the re-
quirement for hyper parameters to be manually tuned. To solve
this problem, we have improved the initial model and added an
optimization algorithm to automatically extract features. Here,
an automated and optimized Gabor-based feature extraction
and recognition model has been proposed.

Due to space limitations, more details about system design
can be found in Xu et al. [15], but briefly, there are several
key lip feature extraction steps:
1. Extract individual frame from a video.
2. Extract ROI (mouth region) using the Dlib toolkit.
3. Obtain an optimised group of Gabor parameters us-
ing Bayesian optimization to tune hyper parameters.
The Gabor kernel is packaged as Opencv function,
cv2.getGaborKernel((ksize, ksize), σ, θ, λ, γ, ϕ), the real
part of Gabor transform is performed as follows:

g(x, y;λ, θ, ψ, σ, γ) = exp(−x′
2 + γ2y′2

2σ2
)exp(i(2π

x′
λ

+ ψ))

(1)
where:

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

where ksize is the size of Gabor kernel, σ is the standard
deviation of the Gaussian function used in the Gabor filter, θ
is the orientation of the normal to the parallel stripes of the
Gabor function (set to 90 degrees). λ represents the wavelength
of the sinusoidal factor, γ is the spatial aspect ratio, and ψ is
the phase offset, defined as 0.

Algorithm 1 Optimized system with Gabor filtering
Require: Original width and height: WidthD, HightD
Input: Gabor parameters sets (search space): Ksize, λ, γ, σ. Optimized Gabor param-
eters: Ksizei, λi, γi, σi

1: for Ksizei, λi, γi, σi in search speace do
2: Extract Gabor features use optimized parameters
3: Select mouth part according to WidthD, HightD
4: Evaluate f = |WidthD − WidthG| + |HeightD − HeightG|
5: if f is minimal then
6: return Ksizei, λi, γi, σi

7: end if
8: end for

The optimization method is described in Algorithm 1.
Before filtering the ROI, optimal parameters need to be found,
therefore, there is a loop to cycle the value of each parameter
with Tree-structure Parzen Estimator Approach (TPE) based
Bayesian optimization, a powerful and very widely used
optimization tool proposed by Bergstra et al. [21], packaged as
the ’hyperopt’ Python function. The orientation θ is set as 90,
since we only extract horizontal features. The Phase offset ϕ is
set as 0 by default, the other four parameters (Ksize, λ, γ, σ)
need to be tuned. Based on preliminary experimentation, the
search space is set as: ksize ranges from 5 to 25, λ ranges
between 5 and 25, σ can be from 2 to 10, γ is between
0.2 and 0.9. A set of Gabor parameters Ksizei, λi, γi, σi
are optimized by TPE algorithm within this search space.
Those optimized parameters are used to estimate the error
f = |WidthD−WidthG|+ |HeightD−HeightG|. WidthD
and HeightD are denoted as the lip width and height extracted
by the Dlib toolkit. WidthG and HeightG are denoted as
the lip width and height extracted by our method. Hyper
parameters that minimize the error are used for Gabor filtering.

4. Apply Gabor transform to obtain mouth region features with
optimized hyper parameters.
5. Select the mouth region and return 7 parameters: width,
height, area, intensity, x and y values of central point, and
orientation (more details in Xu et al [15]). The width is the
inter-lip width. The height is the inter-lip height. The area
is the number of pixels, the intensity is the sum of each
pixel density value (the darker the inter-lip area, the deeper
the mouth opening and the larger the sound intensity), as
shown in Figure 1. As well as delivering good performance,
we use similar features (albeit without automation) in previous
work [20], and show that in noisy environments, we can
identify distinct changes in visual speech patterns. Preliminary
work [16] also identified consistent visualisation patterns with
different speakers, so that words could be visualised.

The model applied for VSR is the same for four recognition
targets: tones, initials, finals, and Pinyin. Each uses a coordi-
nated CLA model. We input the Gabor feature vectors for a
single character, and a dense layer is used for classification,
with a different layer used, depending on whether we wish to
classify initials, finals, Pinyin, or tones. This method uses a
single convolutional layer to provide high quality features to
the BiLSTM layer, and the attention model learns key features.
The structures of both audio-only and visual-only models are
very similar. As we use Gabor features rather than CNN inputs,
the CNN+CLA model is not transfer learning based.

Fig. 1: Example of mouth ROI, showing height, width, area,
and intensity, taken from Chiu et al. [20].
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III. MULTIMODAL FUSION FOR SPEECH RECOGNITION.

Audiovisual fusion refers to fusing the features from dif-
ferent speech modalities (i.e. audio and visual) to improve
speech recognition. In this paper, we use the visual features as
discussed above, and extract MFCCs as audio features, where
maximum frame length (with zero padding) is set to 50 frames,
with each frame having 57 MFCC coefficients.

There are two common strategies, early or late fusion
[22]. Early fusion combines (e.g. concatenates) the features
from both modalities before machine learning, whereas late
(decision) fusion applies machine learning separately to each
modality stream, before combining them to produce a final
result. Research has shown that both strategies can have good
results, depending on the scenario. Gogate et al. [23] recently
identified good results with late fusion, and we adopted this
strategy here. Our fusion model combines the ASR and VSR
models, and adds two dense layers for final classification.

To present the detailed structure, we choose the tone fusion
model as an example. For the VSR model, the layers and
output size are shown in Table I (left), the input is the
sequence of Gabor features, the first step is to normalize
inputs, then feed it into a 1D CNN to learn time series features
from the Gabor features. The features are transferred to the
pooling layer for further aggregation. After convolution, we
use BiLSTM to model the hidden relationship of frames in the
character.The dropout layer is then used to prevent overfitting.
For the attention mechanism, the axes of the input layer
with index 1 and 2 are permuted and we add a dense layer
with ‘softmax’ activation function to select a vector from the
input that contributes most to the target. The weight matrix
is identified by permuting the axes again, and the attention
model layer and BiLSTM layer are multiplied, with a dense
layer to make a combined decision for identifying the target.
The ASR model is similar to the VSR model (Table I (right)).
The two outputs are combined by the concatenation layer, then
with the final two dense layers for classifying the target (Table
I).

IV. MANDARIN CHINESE CORPUS

Many English multimodal corpora have been published such
as Grid [24], and LRS [8]. Chinese differs from English
in that it consists of characters and Pinyin. Each Chinese
Character possesses one syllable which is represented by
pinyin. Each pinyin has an initial, a final, and a tone. For
example, the pinyin ‘mén’, where ‘m’ is the initial, and ‘én’
is the final, with a tone mark of 2. In addition, Chinese
characters are monosyllabic [25], differing from languages
like English. However, there are only a small number of
existing AVSR Chinese corpus such as LRW-1000 [26], the
CMLR Dataset [9], and the CCTV website based dataset [27].
These are all large scale with a complex visual background
and a noisy speech environment. For this project, to perform
accurate Pinyin character recognition, we require a labelled
video corpus of distinct Chinese characters, recorded in a clean
environment. Therefore, the AVMC dataset [15], developed in

TABLE I: Fusion model of tones.

AVSR
VSR ASR

InputLayer (None, 35, 7) InputLayer (None, 50, 57)
Batch Normalization Batch Normalization

Conv1D
filters: 64

kernel size: 1
activation: relu

Conv1D
filters: 64

kernel size: 1
activation: relu

MaxPool1D
pool size: 2

strides: 2

Dropout
rate: 0.3

BLSTM
filter: 128

BLSTM
filter: 128

Dropout
rate: 0.3

Output shape (None,17, 256)

Dropout
rate: 0.3

Output shape (None, 50, 128)
Permute(2,1) Permute(2,1)

Dense
filter: 17

activation: softmax

Dense
filter: 50

activation: softmax
Permute(2,1) Permute(2,1)

Multiply Multiply
MaxPool1D
pool size: 14

strides: 4

MaxPool1D
pool size: 50

strides: 2
Dense

filter: 100
actication: sigmoid

Dense
filter: 200

actication: sigmoid
textConcatenate

Dense
filter: 64
Dropout
rate: 0.25

Dense
filter: 4

OutputLayer (None, 1, 4)

our previous work, is more suitable for our research needs.
More details can be found in Xu et al. [15].

Some previous research [27] [9] has attempted to predict
pinyin through single letters. For example, the pinyin of ‘men’
will be predicted as [‘m’, ‘e’, ‘n’]. However, this prediction
method can easily confuse the recognition system because
some letters appear in both initials and finals with different
pronunciation. An example of this is the letter ‘g’, which
appears in ‘guo’ as an initial, and also appears in ‘jing’ as
a component of a final. Ma et al. [10] argued that the pronun-
ciation of pinyin is a syllable, they therefore predict pinyin as
units of initials and finals. For example, the pinyin ‘men’ will
be predicted as an initial ‘m’ and finals ‘en’. Furthermore,
some finals are compound finals, consisting of two or three
simple finals, such as ‘uan’ and ‘ian’, the pronunciation of the
last two finals ‘a’ and ‘n’ are the same, but the first final ‘u’
and ‘i’ are different. We propose to overcome this and remedy
the defects in the previous approaches by dividing pinyin into
initials and finals and predicting letters separately.

V. RESULTS AND DISCUSSION

A. System Configuration

All machine learning and feature extraction took place on
a desktop machine, with Windows 10 Pro installed, using the
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TABLE II: Accuracy and IQR of different VSR models.

VSR model Tone Initial Final Pinyin
Gabor + Inception [15] 0.561 0.628 0.730 0.617
New Gabor + CLA 0.485 0.568 0.762 0.642
CNN +CLA (100) 0.487 0.554 0.622 0.533
CNN +CLA (300) 0.509 0.558 0.747 0.587

Interquartile Range Tone Initial Final Pinyin
New Gabor +CLA 0.010 0.010 0.010 0.016
CNN +CLA (300) 0.034 0.011 0.020 0.032

Anaconda 3 Jupyter notebook. The CPU was an Intel i7-8700K
with a 3.70 GHz clock speed, and 32 GB of RAM.

ASR and VSR are both similar models, the configuration
of initial, final and pinyin recognition models are similar
to the tone model which is shown in Table I. The ratio
of training data + validation data to testing data is 8:2.
The loss in recognizing the digits is evaluated using the
categorical crossentropy loss function and for optimization
we have applied Adam optimization to minimize the error.
All our experiments were run for 300 epochs utilizing the
ReduceLRonPlateau schedule with patience of 6 epochs, decay
factor of 0.5 , verbose of 1 and minimal learning rate of
0.00001 with a batch size of 128.

B. Visual Only Speech Recognition

To evaluate our proposed automated Gabor optimization
and audiovisual fusion approach, we compare our results with
previous results reported in Xu et al. [15], and also by using a
CNN based autoencoder to create an end-to-end system [28].
The results are shown in Table II. All experiments were run 5
times with the datasets randomly shuffled, and the mean and
interquartile range (IQR) calculated. The only exception was
the CNN+CLA(100) configuration.

Table II shows that our proposed approach (New Gabor +
CLA) delivers good results. When considering only the initials
(e.g. ’zh’ in ’zhang’) the accuracy is 0.568, due to there being
less visual information available at the start of a word, and
there being more variation than for finals. Identifying the tones
(Mandarin Chinese has 4 tones) has an accuracy of 0.485,
however, the confusion matrix (not shown here due to space
limitations) showed that the results are effectively randomised,
which is to be expected, given the tone is entirely vocal.
However, for finals and pinyin, we see much better results.

Compared to work in the literature [15], (’Gabor + In-
ception’ in Table II), which used handcrafted Gabor features
and the Inception model, our results are similar, with poorer
performance with initials and tones (as discussed, tone results
with VSR should be treated with caution), but slightly better
performance with finals and overall pinyin results. While the
performance is similar, we are using a different and more
robust feature extraction method, and when we disregard
tones (which are not detected accurately with any VSR only
approach), this means that on two of the 3 outputs, the final
and pinyin, our upgraded model is better performing.

For comparison, we also conducted end-to-end training us-
ing a CNN [28], with the full image as the input. This is much
larger than our 7 features, and 100 epochs was not enough to

TABLE III: Mean training time of VSR models in seconds.

VSR model Tone Initial Final Pinyin
New Gabor +CLA 240.574 198.079 125.375 241.903
CNN +CLA (100) 710.483 1561.795 563.196 3089.428
CNN +CLA (300) 1884.761 4781.382 4313.816 9126.552

TABLE IV: Average accuracy and IQR for ASR (MFCC fea-
tures), VSR (Gabor features) and AVSR (MFCC and Gabor)
models.

Models Tone Initial Final Pinyin
(ASR) MFCC + CLA 0.868 0.866 0.913 0.809
(VSR) New Gabor + CLA 0.485 0.568 0.762 0.642
(AVSR) MFCC + New Gabor + CLA 0.886 0.875 0.936 0.848

Interquartile Range Tone Initial Final Pinyin
(ASR) MFCC + CLA 0.019 0.022 0.015 0.139
(VSR) New Gabor +CLA 0.010 0.010 0.010 0.016
(AVSR) MFCC + New Gabor + CLA 0.011 0.018 0.010 0.024

complete training, whereas it was enough for our proposed
features. Therefore only a single run for the 100 epoch
configuration was reported, and we instead used 300 epochs.
The results in Table II show broadly similar accuracy as our
features, however the training time was considerably slower, as
shown in Table III. Training our network to recognise pinyin
using Gabor features took 241.9 seconds, however to achieve
equivalent results with CNN input took 9126.6 seconds. It is
also worth mentioning that to improve performance for end-to-
end learning, additional layers would be required to optimise
training, resulting in time increases.

C. Multimodal Fusion for Speech Recognition

Table IV shows the results of ASR, VSR and AVSR,
calculated for initials, finals, pinyin, and tones. As expected,
audio only outperforms visual only, and fusion improves the
results. For tones and initials, we find small improvements of
0.018 and 0.009, but for finals (0.913 with audio only), fusion
resulted in an accuracy of 0.936, an improvement of 0.023. For
pinyin, the improvement was even larger, with fusion having
an accuracy of 0.848, an improvement of 0.039.

Direct comparison with other research is challenging. For
VSR, Zhang et al. [27] use the CCTV news dataset. Their
LipCH-Net model achieved 58.7% (Pinyin-level) accuracy,
they also test their corpus with LipNet [7], which reported
95.2% accuracy in sentence-level on GRID, but only achieved
41.6% (Pinyin-level) accuracy. Zhao et al. [9] proposed the
CSSMCM model, which uses a two-layer bi-directional GRU
for the encoder and a two-layer uni-direction GRU for the
decoder. It achieves 63.78%, 89.05% and 67.52% on pinyin,
tones and character accuracy with the CMLR dataset. Ma et
al. [10] use the same dataset to predict pinyin as the units of
initials and finals, with 74.64% accuracy by using the CTCH-
LipNet model. Our proposed optimised lightweight approach
achieves a competitive recognition rate on finals and pinyin
with 76.2% and 64.2%, using the AVMC dataset.

For AVSR, Yuan et al. [12] report state-of-the-art perfor-
mance on the LRW-1000 [29] Chinese dataset. The word se-
quence for 3D-CNN BiLSTM Attention for VSR and MFCC
was fed into CNN BiLSTM Attention for ASR. By using late
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fusion, it achieved 82.78% accuracy and found a 7.9% percent
improvement in the audio only results when they added visual
information, similar to the gains reported here, thus verifying
our findings using our lightweight approach.

VI. CONCLUSION

In this paper, a lightweight audiovisual speech recogni-
tion system, including MFCC feature extraction, optimized
automated Gabor feature extraction and recognition, is pro-
posed for Chinese language speech recognition. Despite using
a much lighter Gabor-based method rather than a big-data
approach, our results show a competitive recognition rate and a
very quick training time. Using geometric features is arguably
a more traditional approach, and yet, we have developed a fast
and reliable system. Furthermore, it is often argued that the
key limitation with ‘handcrafted’ approaches in comparison
with deep learning models is that the hyper parameters need
to be manually tuned. Our approach is fully automated, thus
negating a major issue with this approach.

We also identify performance differences specific to Chinese
spoken language, with visual information more useful in finals
and pinyin, but arguably less so in initials and tones. In
addition, finals perform better than pinyin in all VSR and
AVSR experiments which verified our analysis that letters
that appeared in both initials and finals confused the system,
and decreased the pinyin recognition rate. Finally, the late
fusion of audio and visual streams is used to deliver optimised
results. Future work will investigate the exact errors that visual
information solves/introduces upon fusion, and extend this
work to make it more robust and reliable in the real world.
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