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Abstract—With the increasing amount of available data and
advances in computing capabilities, deep neural networks (DNNs)
have been successfully employed to solve challenging tasks in var-
ious areas, including healthcare, climate, and finance. Neverthe-
less, state-of-the-art DNNs are susceptible to quasi-imperceptible
perturbed versions of the original images – adversarial examples.
These perturbations of the network input can lead to disastrous
implications in critical areas where wrong decisions can directly
affect human lives. Adversarial training is the most efficient
solution to defend the network against these malicious attacks.
However, adversarial trained networks generally come with lower
clean accuracy and higher computational complexity. This work
proposes a data selection (DS) strategy to be applied in the
mini-batch training. Based on the cross-entropy loss, the most
relevant samples in the batch are selected to update the model
parameters in the backpropagation. The simulation results show
that a good compromise can be obtained regarding robustness
and standard accuracy, whereas the computational complexity of
the backpropagation pass is reduced.

Index Terms—data-selection, sampling strategy, adversarial
training, robustness-accuracy tradeoff

I. INTRODUCTION

Over the past decade, the amount of available digital data
has exponentially increased. Thanks to the advances in com-
puting capabilities, deep neural networks (DNNs) have been
successfully employed to solve challenging image and natural
language processing tasks. However, state-of-the-art DNNs are
known to be highly vulnerable to adversarial examples [1],
[2]. These small but malicious perturbations of the network
input can manipulate the trained model to produce incorrect
predictions with high confidence, and some perturbations can
even fool different network models [3]. Since adversarial
attacks might lead to disastrous implications in critical areas
like healthcare [4], climate [5] and finance [6], defending
against them is critical.

So far, adversarial training is the most effective approach to
mitigate the effect of strong attacks like the Projected Gradient
Descent (PGD) attack [7], DeepFool [8], and AutoAttack [9].
Training the DNN with perturbed versions of the original
samples makes it possible to improve the accuracy on unseen
adversarial examples, also known as robustness accuracy [10].
However, generating adversarial examples during training can
be highly computationally intense since each sample is usually
built with several steps in the direction of the gradient as
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the model is trained. Moreover, adversarial training generally
decreases the standard accuracy, that is, the accuracy on clean
samples [11]. This robustness-accuracy tradeoff is reported
to be highly data-dependent, especially regarding the data
distribution [12] and its quality [13]. Furthermore, we only
have access to a training dataset which is not necessarily
representative for the problem we aim to learn. In this case,
we could avoid using the entire training data. Since the
dataset is reduced, we can save several computations during
backpropagation and speed-up training. This hypothesis was
already investigated for standard training in [14], [15]. In this
work, we extend the work in [14], [15] and apply it to the
adversarial training case. From each mini-batch composed
of both clean and adversarial samples, the proposed data
selection algorithm selects the most relevant samples based
on the cross-entropy loss. Since only the selected samples are
used to update the model parameters in the backpropagation,
the training time is reduced. The selection also balances the
necessary amount of clean and adversarial samples required
to yield satisfactory robustness and standard accuracy.

The paper is organized as follows. Section II presents a
brief overview of the adversarial training method and some
notations. In section III, we propose a data selection technique
for adversarial training. The proposed approach is tested via
simulation results in section IV. Finally, section V includes
some conclusion remarks.

II. ADVERSARIAL TRAINING

Adversarial training continually creates and incorporates
adversarial examples into the training process of a deep neural
network classifier

fθ(x) : RN → {1 · · ·C}, (1)

with θ weights, which maps an input image x to a label y
from a dataset

D = {(x(1), y(1)), (x(2), y(2)), · · · , (x(M), y(M))}, (2)

with C possible classes. Adversarial training attempts to solve
the min-max optimization problem

minθ
1

|D|
∑

x,y∈D
maxη L(fθ(x+ η), y)

s.t ||η||p ≤ ϵ,

(3)

where L(fθ(x+ η), y) is the loss function on the adversarial
sample and η is a small perturbation constrained by ϵ.
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Creating adversarial samples involves solving the inner
maximization problem in equation (3), in which the loss
function L is maximized in an effort to change the prediction,
that is, fθ(x+η) ̸= fθ(x). The optimization constraints ensure
that the distance between the adversarial and original example
should be less than ϵ under a particular norm, ||η||p ≤ ϵ.
The norms aim to quantify how imperceptible to humans an
adversarial example is. Some examples of norms are the l0
norm, l2 norm, and l∞. We then briefly review the most
popular methods to create adversarial examples.

Introduced by [2], the Fast Gradient Sign Method (FGSM)
attack generates adversarial examples by modifying the input
towards the direction where the loss L increases

x′ = x+ ϵsign(∇xL(θ,x, y)), (4)

with sign(·) the sign function, and ∇xL(θ,x, y) the loss
gradient with respect to x. One of the strongest l∞-bounded at-
tacks, the PGD attack [7] tries to solve the inner maximization
problem in equation (3) following an iterative procedure. At
each step i, the adversarial example is updated as

x′
i = clipx+ϵ(xi−1 + αsign(∇xL(θ,x, y))), (5)

in which function clipx+ϵ(·) clips the input at the positions
around the predefined perturbation range. In the context of l2-
bounded attacks, Deepfool [8] is an iterative attack optimized
for the l2-norm based on a linear approximation of the
classifier. Using geometry concepts, DeepFool searches within
the region of the space that describes the output of the classifier
(polyhedron) for the minimal perturbation that can change the
classifiers decision. Among black-box attacks, one pixel attack
[16] is a l0-bounded attack that employs differential evolution
to create adversarial examples without knowing the network
gradients and its parameters. Finally, the AutoAttack [9]
method consists of an ensemble of four attacks: two versions
of the PGD attack, the targeted version of the Fast Adaptive
Boundary (FAB) attack [17] and the black-box Square Attack
[18]. Currently, AutoAttack and PGD attack are the most
popular methods to test adversarial robustness. Since the PGD
attack is less computationally intense than AutoAttack, we
consider the PGD attack in this work. However, other attacks
can be used with the proposed data selection.

With the inner maximization problem addressed, the outer
minimization problem in equation (3) is then solved to find
the model parameters that minimize the loss on the generated
adversarial examples. The original dataset D is split into small
batches B and stochastic gradient descent (SGD) is employed
to update the model parameters

θt = θt−1 + µ
1

|B|
∑

x,y∈B
∇θL(fθ(x+ η∗), y), (6)

where the gradient is evaluated at the maximum point η∗ found
in the inner maximization problem, thanks to the Danskin’s
theorem [19].

III. PROPOSED DATA SELECTION FOR ADVERSARIAL
TRAINING

When performing adversarial training, we are interested in
learning a process or function f(·) that maps a data space X

into an output space Y . However, we do not have direct access
to samples from X in order to train the model according to the
adversarial objective. We only have access to a subset D which
is split into batches used to update the model parameters in
equation (6). However, there is no guarantee that this available
subset or its batches consist of a good representation of the
process f(·). In this regard, we propose a sampling strategy
to select the most relevant samples to compose the batches in
adversarial training.

We first consider the entire original dataset D of input-
output pairs in equation (2). Then, at each mini-batch iteration,
b′ clean samples are selected from the whole dataset to form
the batch set B′. By using PGD, b′ adversarial examples are
generated from the samples in the set B′ using equation (5).
The resulting mini-batch B is then composed of b = 2b′ sam-
ples. The samples in the mini-batch flow through the network,
the gradients are computed, and we obtain the network output
as a one-hot-encoded vector y, as shown in Figure 1. In order
to quantify the relevance of the samples in the mini-batch, we
define the error signal

E(ŷ,y) =

C∑
c=1

e(ŷc, yc), (7)

which is based on the cross-entropy loss

e(ŷc, yc) = log

(
C∑

c=1

exp(ŷc)

)
− yc, (8)

where C is the number of classes.
As a rule, the closer to zero the error signal is, the less

informative or relevant will be the contribution of the corre-
spondent data pair to the parameter update in equation (6). We
then propose to select a portion Pup of the samples in B based
on the higher error values in equation (7), forming a selection
set S. After the forward propagation is completed, only the
samples in S are used in the backpropagation to update the
network parameters θ, as depicted in Figure 2. Since only a
portion Pup of the samples are used to update the parameters,
we can save some computations and we alleviate the training
burden.

Mini-batch of size 2b

forward propagation

clean sample

adversarial sample

x1

ŷ1 y1

E(ŷ1,y1)
error

Fig. 1: Forward propagation and error signal computation.

One question remains about how to choose an adequate Pup

for our problem. As Pup → 0, fewer samples are selected and
we save more computations in the backpropagation. In this
case, however, the selected samples might be insufficient lo
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clean sample

adversarial sample

E(ŷ1,y1)

E(ŷ3,y3)

E(ŷk,yk)

greatest errorsback-propagation

Fig. 2: Selected samples being used in the backpropagation.

learn the problem. For standard training, the most favorable
Pup choice mainly depends on the dataset complexity [14].
Simpler datasets like MINIST requires Pup = 0.3, whereas
for more complex datasets as CIFAR10, Pup = 0.5 is a
better choice. Thus, one option is to set a fixed Pup for the
whole training process. In this way, we can set the amount of
saved computations from the beginning. Nevertheless, in cases
where the dataset complexity is unknown and it is difficult to
prescribe a Pup for all the epochs, an automatic Pup can be
advantageous. In this way, we can obtain the Pup for each
epoch in an adaptive manner as the training is performed. This
can be achieved by considering the accuracy at each epoch as
a criterion. Hence, we can estimate the number of selected
samples Pup at each epoch t.

P (t)
up = (1− λ(t−1)

acc )P (t−1)
up (9)

where P
(0)
up = 1 and λ

(t−1)
acc is the last available accuracy.

We need more samples in the mini-batch to improve learning
when the accuracy is low, whereas fewer samples are required
to continue the learning process when the accuracy increases.

As it will be shown in the simulations, updating the Pup

using equation (9) accelerates the convergence for P
(0)
up =

1 because, in this case, it selects more samples in the first
epochs. Our motivation was to provide more samples to the
model at the beginning to improve and accelerate its learning.
Therefore, early stopping methods [20] can be employed to
further reduce the training time. Since we do not consider
the early stopping approach in the simulations, we propose
using a fixed prescribed Pup in this work. The main proposed
algorithm is detailed in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we assess the performance of the proposed
data selection method in the CIFAR10 dataset using the
Resnet18 model. The PGD attack with ϵ = 8/255, α = 0.01
and 20 iterations is employed to build the adversarial exam-
ples. We consider the following methods in the simulations.
The standard method trains only with clean samples with a
mini-batch B of size b = 256. Also using B with b = 256, the
robust method is trained only with adversarial examples. The
DS robust method is trained with the selection set S of size
b = 256, which is composed of both clean and adversarial
samples, and it is obtained using our selection strategy with

Algorithm 1 Proposed Data Selection for adversarial training

1: Given dataset D, mini-batch size b′, and prescribed Pup

2: for epoch = 1 · · ·T do
3: for mini-batch B ⊂ D do
4: Create adversarial examples {x′

1, · · ·x′
b′} from

clean samples {x1, · · ·xb′} using current state of the
network and obtain B′ = {x′

1, · · ·x′
b′ , x1, · · ·xb′};

5: Forward propagation with samples in B′;
6: Compute the error signal for each sample in B′

using equation (7);
7: Select the Pup × 100% of the samples in B′ with

greatest error values;
8: Update model parameters by back propagation

using only the data samples in S;

Pup fixed or varying. The random robust method is trained
with a mini-batch of size b = 256, composed of clean and
adversarial samples selected at random. We also consider the
selection method proposed in [13] in which the samples are
selected based on their learning stability. In this case, we used
50% of the samples with high quality in order to perform a
fair comparison in terms of number of samples used.

First, we vary the portion of selected samples Pup in
Figure 3 to investigate the impact on the standard and ro-
bustness accuracy at the last epoch. By using Pup = 0.5, we
slightly outperform the approach that consider all the samples
(Pup = 1) in terms of standard accuracy, with the benefit of
requiring only 50% of the samples in the batch. In terms of
robustness, the methods with 0.5 ≤ Pup < 1 perform quite
close to the method with Pup = 1. If we reduce Pup even
further, we do not observe a gain in performance. In such
case, the model would require more epochs to achieve the
same performance or it would need more samples to learn the
problem.
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Fig. 3: Evolution of the standard and robustness accuracy as
the portion of selected samples Pup is varied.

We then evaluate the proposed DS robust method with
varying Pup and compare it with the fixed Pup = 0.5,
the standard and robust methods in terms of standard and
robust accuracy in Figures 4 and 5. We show in Figure 6
the obtained Pup for each epoch following equation (9). By
using both a varying Pup and Pup = 0.5, we observe an
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improvement in terms of standard accuracy when compared
with the standard and robust methods. Moreover, reducing the
number of samples in the mini-batch does not affect the robust
accuracy, as shown in Figure 5.
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Fig. 4: Standard accuracy as a function the number of epochs.
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Fig. 5: Robust accuracy as a function the number of epochs.
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Fig. 6: Portion of selected samples Pup obtained for each
epoch following equation (9).

This improvement in robustness-accuracy tradeoff is rea-
sonable since our method includes the most potential relevant
clean and adversarial samples in the mini-batch. Some claim
that such a tradeoff exists because the standard and robust
objectives conflict [21], [22]. We can then observe in Figure 7
that the model trained with Pup = 0.5 starts by selecting more
adversarial samples than clean samples. However, after a few
epochs, this behavior changes, and the number of selected

clean samples increases. This feature potentially suggests
that the model tries to learn the adversarial problem first.
When it is done, the DS method attempts to improve the
clean accuracy. Moreover, the number of selected minimum
adversarial examples increases as the model is trained, as
depicted in Figure 8. The minimum adversarial examples are
generated by slowly increasing the perturbation constraint ϵ
until the prediction changes.
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Fig. 7: Averaged amount of selected clean and adversarial
samples at each epoch for Pup = 0.5.
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Fig. 8: Averaged amount of selected minimum adversarial
examples at each epoch for Pup = 0.5.

Finally, our methods are compared with other selection
methods in terms of standard and robust accuracy in Figures
9 and 10, respectively. The DS approach outperforms both
the random method and the selection method with 50% of
high quality samples from [13], especially in terms of standard
accuracy.

The benefits of the proposed methods in terms of perfor-
mance are followed by a reduction in computational complex-
ity. Since only Pup samples in the mini-batch are backprop-
agated through the network to update its parameters; we can
save some computations. For example, we present the total
training time after 200 epochs in Table I. The simulations were
performed in a computer with two GTX-1080 GPUs. With
Pup = 0.5, the training time is reduced when compared with
Pup = 1 and varying Pup. However, if we stop the training
by the 150th epoch, the training time for the varying Pup can
be reduced to 15261.29s. Therefore, the varying Pup strategy
can be applied if an early stopping method is also employed.
We also outperform the method introduced in [13] in terms
of total training time as their method needs a pre-training to
rank the samples by the learning stability values.
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TABLE I: Total training time after 200 epochs.

Method Time (s)

Selection approach from [13] with 50% of samples removed 39970.71

Robust with Pup = 1 20200.33

DS Robust with Pup = 0.5 19770.51

DS Robust with Pup varying as in equation (9) 20161.29
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Fig. 9: Comparing the proposed method with other selection
methods in terms of standard accuracy.
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Fig. 10: Comparing the proposed method with other selection
methods in terms of robust accuracy.

V. CONCLUSION

Adversarial training is the most popular solution to mitigate
the effect of malicious attacks on the deep neural networks.
Although adversarial training is able to improve the robustness
accuracy, it usually sacrifices standard accuracy in its way.
Motivated by this drawback and also seeking to reduce the
computational complexity during training, we proposed a data
selection strategy to include the data samples that bring about
a novelty to the learning process. The simulation results with
CIFAR10 using the Resnet18 model indicate that the method
is beneficial to improve the robustness-accuracy tradeoff and
reduce the computational complexity of the training. In the

future investigation, one can employ the data selection method
to other CNNs models and other datasets.
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