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Abstract—Recognition of individuals through different bio-
metric traits is becoming increasingly important. Apart from
traditional biomarkers (like fingerprints), many alternative traits
have been proposed during the last two decades: ECG and EEG
signals, iris or facial recognition, behavioral traits, etc. Several
works have shown that ECG-based recognition is a feasible
alternative for either stand-alone or multibiometric recognition
systems. In this paper, we propose a novel, efficient and scalable
clustering-based method for ECG biometric recognition. First
of all, fixed length segments of the ECG are extracted without
the need of computing any fiducial points. Unique traits for each
subject are then obtained by computing the autocorrelation (AC)
of each segment, followed by the discrete cosine transform (DCT)
to compress the available information. Finally, hierarchical ag-
glomerative clustering (HAC) is applied to generate the groups
that will be used later on for classification. The combination
of the DCT to reduce the feature dimensionality and the HAC
to decrease the number of features required by the classifier
results in an efficient method both from the memory storage
and computational point of view. Furthermore, the proposed
AC/DCT-HAC (ADH) approach is robust, since no fiducial points
(which may be difficult to extract reliably) are required, scalable
and attains a better performance than other approaches with
higher storage/computational cost.

Index Terms—electrocardiogram (ECG), biometric recogni-
tion, non-fiducial methods, hierarchical agglomerative clustering

I. INTRODUCTION

Correct identification of individuals through different bio-
metric traits is becoming increasingly important. Traditional
recognition systems, based on a combination of access cards
and passwords, suffer from several well-known weaknesses:
ease of identity impersonation, security breaches due to access
card/password theft, denial of access to the intended user
due to forgotten passwords or lost access cards, etc. As
an alternative, biometric recognition systems rely on unique
biological traits of the subjects which are difficult to falsify
and cannot be lost or forgotten. Some traditional biomarkers
(like fingerprints) have already been used for a long time,
for example as part of national identification systems [1].
However, many alternative biometric measures have been
proposed during the last two decades: ECG and EEG signals
[2], [3], iris or facial recognition [4], [5], [6], behavioral traits
[7], [8], etc.

In this paper, we focus on ECG-based biometric identi-
fication. Since the seminar works of Biel et al. [9], [10],

several authors have shown that ECG-based recognition is a
feasible alternative either for stand-alone or multi-biometric
recognition systems. On the one hand, several systems based
on fiducial methods, which rely on using several fiducial
points extracted from the detected QRS complexes (based on
significant intervals and normalized amplitudes of the different
waveforms), have been proposed [11], [12]. Unfortunately,
extracting the fiducial points can be computationally demand-
ing and cannot be reliably performed for all users. On the
other hand, non-fiducial methods, which do not require the
extraction of the QRS complexes from the signals and work
directly with a transformed version of the raw data (e.g.,
DCT transform), have been considered [13], [14]. However,
these studies have been performed on very reduced sets of
subjects (14 and 27, respectively) and their scalability is still
unclear. Odinaka et al. performed a comprehensive survey of
existing methods in 2012, comparing several of them on a
common dataset [2]. Unfortunately, the database used was not
made publicly available. A more recent survey was undertaken
by Fratini et al., but no simulation study was performed
[15]. Since then, several deep learning approaches, where the
relevant features are automatically extracted by the network,
have been proposed [16], [17], [18]. However, they have large
memory storage and computational cost requirements that
prevent their use in some applications, and their scalability
is also unclear as it may require re-training the network
whenever new data are available. Finally, several authors have
also developed multi-modal biometric systems, where the ECG
signal is combined with other biometric traits in order to
enhance identifiability [19], [20], [21].

In this paper, we propose a novel, efficient and scalable
clustering-based method for ECG biometric identification.
First of all, fixed length segments of the ECG are extracted
without the need of computing any fiducial points. Unique
traits for each subject are then extracted by computing the
autocorrelation (AC) of each segment, followed by the discrete
cosine transform (DCT) to compress the available informa-
tion [13], [14]. Finally, hierarchical agglomerative clustering
(HAC) is applied to generate the groups that will be used later
on for classification. This is the main novelty of the paper,
since a clustering-based classification approach had never been
proposed for ECG biometric recognition as far as we know.
The combination of the DCT to reduce the feature dimension-
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Fig. 1: Block diagram of the novel ECG-based biometric identification system proposed.

ality and the HAC to decrease the number of features required
by the classifier results in an efficient method both from the
memory storage and computational point of view. Further-
more, the proposed AC/DCT-HAC (ADH) approach is robust,
since no fiducial points (which may be difficult to extract
reliably) are required, scalable and attains a better performance
than other approaches with higher storage/computational cost.

The paper is structured as follows. First of all, Section
II provides an overview of the novel ECG-based biometric
identification system developed. Then, the proposed clustering
approach is described in Section III. Finally, the numerical
results are shown in Section IV and the conclusions are
provided in Section V.

II. PROPOSED ECG-BASED IDENTIFICATION SYSTEM

The proposed system, both for the training and test stages,
is described in Figure 1. During the training stage, we assume
that a database with single-channel labelled ECG data is
available. In this paper, we use the P = 548 valid recordings
from the PTB database [22], which is described in Section
IV-A. These data are used as the input to the four blocks
shown in Figure 1a:

1) A segmentation of the time-domain ECG signal in
fixed blocks of Tb = 5 seconds. This segmentation is
performed without computing any fiducial points (i.e.,
without the need to detect the R peak or any other
waveform inside the ECG) and without any overlap
among the segments.

2) A feature extraction stage, which consists in computing
the autocorrelation (AC) of the samples in the fixed
length segment. This AC is unique for each subject,
since the information about the length and height of the
different relevant waveforms in the ECG (i.e., the so
called P-QRS-T complexes) is embedded in the shape
of the AC [13], [14].

3) A dimensionality reduction stage to reduce the large
number of features extracted in the previous stage (Nf =
Tb ·fs+1 = 5001 for the PTB database considering only
positive lags). This dimensionality reduction is based on
the discrete cosine transform (DCT) [13], [14], which
allows us to reduce the number of relevant features to

only Nc = 40 (i.e., the first Nc = 40 coefficients of the
DCT) thanks to the DCT’s energy compaction property.

4) A clustering approach to group the extracted features
into separate clusters associated to each user. Hierar-
chical, agglomerative clustering (with different distance
metrics and linkages) is used here, but other clustering
approaches will be explored in future works. Note that
the important problem of cluster association has to
be addressed. A detailed description of this stage is
provided in Section III.

During the test stage a new unlabelled sample is provided
to the system in order to identify the unknown user. As
shown in Figure 1b, the first three blocks are the same as
in the training stage: segmentation, feature extraction and
dimensionality reduction. The only difference occurs in the
last block, where the clustering approach is substituted by
a classifier to determine the identity of the user. Here, we
use a simple K nearest neighbours (k-NN) classifier with
K = 1, since we focus on efficiency and scalability, and it
still provides an excellent performance, as shown in Section
IV. However, more sophisticated classifiers can also be used.

Note that the k-NN classifier could be applied directly
using the samples from the training set after the feature
extraction and dimensionality reduction. However, by adding
the clustering stage the number of samples for the k-NN
classifier is substantially reduced (see Section IV). As a result,
biometric recognition during the test stage becomes much
more efficient and the proposed scheme is better prepared to
incorporate new users (i.e., it becomes more scalable) in the
future.

III. CLUSTERING METHOD

In this section, we describe in detail the central stage of
the proposed ECG-based system: the clustering method. We
briefly describe first the method used for the creation of the
clusters, hierarchical agglomerative clustering, followed by the
description of the cluster association approach followed, which
is based on majority voting.

A. Hierarchical Agglomerative Clustering
We propose to use a hierarchical agglomerative clustering

approach for the creation of the clusters, since it is a simple

624



and well-known clustering approach that we have recently
used to construct multi-scale dictionaries for ECG modeling
[23]. However, note that the goal of the clustering stage is
completely different now. On the one hand, in [23] we were
looking for a few representative waveforms that allowed us
to build compact and representative dictionaries to perform
sparse modelling of a wide range of ECG signals. On the other
hand, here we want to obtain a set of Q ≥ P clusters that allow
us to discriminate among all the P subjects in our database.
Finally, note that we also need to solve the important cluster
association problem (i.e., assigning one or more clusters to
every user in the database), which was unnecessary in [23].

The hierarchical agglomerative clustering technique starts
with R = LP singleton clusters, corresponding to all avail-
able samples from all subjects, and constructs the clusters
iteratively following the hierarchical approach described in
Algorithm 1.

Start with R singleton clusters;
Calculate the proximity matrix for the R clusters;
repeat

Search for the pair of clusters Ci and Cj with the
minimal distance di,j = min

1≤m,l≤R
m̸=l

d(Cm, Cl);

Join clusters Ci and Cj to form a new cluster;
until the desired number of clusters remains;

Algorithm 1: Hierarchical agglomerative clustering.

The key point in Algorithm 1 is the construction of the
proximity matrix that quantifies the similarity or dissimilarity
of each pair of identified clusters, and thus determines the
cluster aggregations at each iteration of the algorithm. A
proximity matrix can be defined as a square R×R matrix, D,
whose (i, j)-th element contains the distance (dissimilarity)
di,j = d(Ci, Cj) among each pair of clusters Ci and Cj for
1 ≤ i, j ≤ R:

D =


0 d1,2 · · · d1,R

d2,1 0 · · · d2,R
...

...
. . .

...
dR,1 dR,2 · · · 0

 . (1)

The values of the elements in the proximity matrix depend on
two parameters: the distance metric and the linkage function.
On the one hand, we have to define a distance metric to
determine the dissimilarity among any two samples xi and
xj . A huge number of distances exist [24], but here we only
consider four of the most common ones:

• Euclidean: d(xi,xj) = ∥xi − xj∥2 with ∥ · ∥2 denoting
the ℓ2 norm.

• City Block (a.k.a. Manhattan): d(xi,xj) = ∥xi − xj∥1
with ∥ · ∥1 denoting the ℓ1 norm.

• Cosine: Defined as one minus the cosine of the included
angle between the two vectors xi and xj . It can be
easily computed as d(xi,xj) = 1 − x⊤

i xj

∥xi∥2∥xj∥2
, where

x⊤ denotes the transposed vector.

• Correlation: One minus the sample correlation between
points (treated as sequences of values).

On the other hand, we also need to define the linkage function,
which determines the distance among clusters and is based on
the distance metric previously defined. Let us consider two
clusters, Ci and Cj , whose elements are, respectively, xik and
xjℓ for k ∈ {1, . . . , |Ci|}, ℓ ∈ {1, . . . , |C|j}, and |C| denoting
the cluster’s cardinality. We have considered the following
linkages:

• Single: The distance between clusters Ci and Cj is
determined by the distance among their nearest elements:
di,j = min d(xik,xjℓ) for k ∈ {1, . . . , |Ci|} and ℓ ∈
{1, . . . , |C|j}.

• Complete: The distance between clusters Ci and Cj is
determined by the distance among their furthest elements:
di,j = max d(xik,xjℓ) for k ∈ {1, . . . , |Ci|} and ℓ ∈
{1, . . . , |C|j}.

• Average: The distance between clusters Ci and Cj is
determined by the average distance among their elements:
di,j =

1
|Ci||Cj |

∑|Ci|
k=1

∑|Cj |
ℓ=1 d(xik,xjℓ).

• Ward: Based on the incremental sum of squares, i.e., the
increase in the total within-cluster sum of squares as a
result of joining two clusters. It can be computed using
the following formula: di,j =

√
2|Ci||Cj |
|Ci|+|Cj |∥x̄i − x̄j∥2,

where x̄i denotes the centroid of the i-th cluster.
All possible combinations of distance metrics and linkages
have been tested and the results are shown in Section IV.

B. Cluster Association

Let there be a set of observations X with P desired
partitions Si (i ∈ [1, P ]) corresponding to the identity of P
subjects. Every single sample can be identified as xik ∈ Si,
where k ∈ [1, Li] and Li = |Si|. After the clustering stage
described in the previous section, we obtain Q clusters, Cm

for m ∈ [1, Q] and Q ≥ P , where each cluster is composed
of one or more observations xik. The cluster association step
consists in labeling each cluster Cm by assigning a single
subjects’ identity to it. Majority voting, based on the known
labels from the training set, is used in this step.

However, if we set Q = P in the hierarchical agglomerative
clustering algorithm, we may end up with some subjects not
being assigned to any cluster after the majority voting. The
simplest strategy for solving this issue (and determining the
final value of Q) consists in trying different increasing values
of Q starting from P until all the subjects’ identities have been
associated to one or more clusters. The implementation of the
aforementioned strategy, based on testing increasing values of
Q, is summarized in Algorithm 2.

IV. RESULTS

A. PTB Database

In order to test the proposed approach, we use the
Physikalisch-Technische Bundesanstalt (PTB) database, com-
piled by the National Metrology Institute of Germany for
research, algorithmic benchmarking and teaching purposes
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Data:
P : number of partitions of S
linkage: Hierarchical clustering linkage of S
QMAX : Value of Q in the most adverse clustering

case
Result:
C: partition of Q clusters
Q: number of clusters of C

Q← P − 1;
repeat

Q← Q+ 1;
C ← partition of Q clusters;
foreach cluster Qm of C do

Calculate the centroid centroidm of Qm;
Obtain the subjects’ identity label lm

associated to centroidm by majority voting
considering all sij ∈ Qm;

end
until |{lm|m = 1, 2, ..., Q}̸=| = P ;

Algorithm 2: Algorithm for obtaining Q.

[22]. The ECGs were collected from healthy volunteers and
patients with different heart diseases by Prof. Michael Oeff,
at the Dep. of Cardiology of Univ. Clinic Benjamin Franklin
in Berlin (Germany), and can be freely downloaded from
Physionet [25].1 The database contains 549 records from 290
subjects (aged 17 to 87 years) composed of 15 simultaneously
measured signals: the 12 standard leads plus the 3 Frank lead
ECGs [26], [27]. Each signal is digitized using a sampling
frequency fs = 1000 Hz with a 16 bit resolution. Out of the
549 records, we used the P = 548 records for which a valid
V1 lead recording existed. Subject 285 in the PTB database
has a single record that does not show any heartbeats on the
V1 lead, so we removed it.

B. Numerical Results

Table I shows the performance (obtained using 40 Monte
Carlo simulations in each case) for all the tested combinations
of linkage and distance metrics with the training percentage
that leads to the best performance. The table shows both the
average accuracy (ACC) and the average percentage of Q
normalized by the training set size (Q/Ntraining(%)). On the
one hand, when considering the ACC as the performance met-
ric we can see that the 10 different combinations of linkage-
distance metrics and training percentages attain an average
accuracy above 99.98%, which is an excellent result. On the
other hand, the Q/Ntraining(%) allows us to estimate the
reduction in the number of features attained by the proposed
clustering stage. The most efficient combination corresponds
to an average linkage with the cosine distance and 85% of
the available samples assigned to the training set, since an
ACC = 0.999897 is attained using only a 23.41% of the

1PTB database: https://www.physionet.org/physiobank/database/ptbdb/

TABLE I: Average accuracy (ACC) and average value of Q
normalized by the training set size (Q/Ntraining) for different
linkage-distance metrics and training percentages.

Linkage Metric Train (%) ACC Q / Ntraining (%)
Complete City Block 90 0.999921 32.6
Ward City Block 90 0.999917 36.99
Single City Block 75 0.999916 42.14
Ward Correlation 90 0.999909 24.55
Ward Cosine 90 0.999902 25.85
Average Euclidean 90 0.999901 33.55
Ward Euclidean 90 0.999898 34.51
Complete Cosine 90 0.999898 27.5
Average Cosine 85 0.999897 23.41
Single Euclidean 75 0.999894 37.76

available samples in the training set (i.e., a compression by a
factor larger than 4 has been attained).

In [28] we compared the performance of several fiducial
methods using different dimensionality reduction and classifi-
cation techniques on the same dataset as the one used here,
although only the healthy subjects were used then. Comparing
the average accuracy attained here to the accuracy of the
fiducial ECG-based biometric identification approaches tested
in [28] (99.65 − 99.85% for the best cases), we see that
the proposed ADH method allows us to obtain even better
performance while decreasing the storage and computational
cost. Furthermore, extracting all the fiducial points requires a
considerable amount of time and cannot always be performed
reliably: from the 52 healthy patients of the PTB database,
we were only able to compute all the required fiducial points
for 48 subjects in [28]. In contrast, the non-fiducial, clustering-
based approach proposed here does not require computing any
fiducial points and thus can be reliably applied in all cases with
little computational cost.

C. Results for MIT-BIH Database

Preliminary results have also been obtained from the MIT-
BIH arrhythmia database. This database contains 48 records
from 47 subjects, with a half-hour duration for each one [29],
and can also be freely downloaded from PhysioNet [25].2 Each
record contains two simultaneously measured channels with
a half-hour duration, taken at fs = 360 Hz with an 11 bit
resolution. We used the second channel, which corresponds to
a modified V1 lead in most subjects, with the exceptions of 4
subjects where a V2 lead was used, 5 with a V5 lead and one
with a V4 lead. Although some signals from the MIT-BIH
database are reasonably clean (e.g., the record from subject
103), in general MIT-BIH records generally present a higher
amount of noise than those in PTB, and we want to investigate
how this affects the recognition performance.

In terms of accuracy, the best result (ACC = 0.9952) is
obtained using a simple linkage with Euclidean distance and
90% of the samples in the training set. However, for this
approach we obtain a high value of Q/Ntraining(%) = 52.09
(i.e., the feature size is only reduced by a factor of 1.92).
In order to increase the compression, we need to slightly

2MIT-BIH database: https://physionet.org/content/mitdb/1.0.0/

626



decrease the accuracy. Using Ward linkage with city block
distance and 75% of the samples in the training set we obtain
Q/Ntraining(%) = 14.31 (compression factor equal to 6.99,
3.62 times higher than before) with ACC = 0.9934 (i.e.,
only a 0.18% decrease in accuracy). Therefore, we see that
the lower quality of the database has a small impact on the
attained performance (0.64% decrease in average accuracy),
but no impact at all in the achievable compression rate, which
is even higher than before.

V. CONCLUSIONS

In this paper, we have proposed a novel ECG-based bio-
metric recognition scheme which is based on a clustering
method (hierarchical agglomerative clustering). The developed
approach is efficient (both from the computational cost and
storage points of view), robust, scalable, and attains excellent
results on all the subjects from the PTB database: average
accuracy above 99.98% with a reduction in feature size by a
factor of 4.27. Preliminary results on the MIT-BIH arrhythmia
database also show very good results (99.34% accuracy in the
best case with a reduction in feature size by a factor of 6.99)
in spite of the lower quality and reduced sampling rate of this
database. Future works will include testing the system on a
larger number of subjects (e.g., on the recently released PTB-
XL database) and considering other clustering techniques.
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