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Abstract—As in many other areas, digitization is also on the
rise in intensive aquaculture. A vision for the future is continuous
monitoring and the recognition of each individual fish in the
system. Previous work has shown that Atlantic salmon can
be recognized using lateral and iris images. For salmon iris
identification a traditional texture feature-based approach was
used. Results indicated a high distinctiveness but a low stability
of the salmon iris. In this work we employ a CNN-based fish iris
identification approach and reassess the previous results. One
question is whether a CNN-based approach performs better in
terms of long-term stability. Furthermore, a second database for
European seabass iris images is used in the experiments. This
makes it possible to check the applicability of iris identification
in another fish species and whether the statements regarding
distinctiveness and stability are also confirmed here. Results show
that the CNN-based approach performs worse compared to the
texture feature-based approach. Same as for the salmon iris a
high distinctiveness of the seabass iris but a low stability can be
reported.

Index Terms—Fish iris identification, Precision fish farming

I. INTRODUCTION
The growing population as well as the increasing prosperity

requires to improve food production. Intensive aquaculture is
significant to be able to guarantee fish supply. However, further
increases in production through a higher density of fish go
hand in hand with an increasing risk of diseases in the stock.
The solution is to deal with fish welfare when increasing the
production which is referred to as eco-intensification. One
building block to deal with fish welfare is to monitor the
stock on a fish by fish basis. Continuous monitoring makes it
possible to identify changes or anomalies in the fish population
at an early stage and to take targeted countermeasures.

For this work, we deal with non-invasive methods. Tag-
ging or marking is not feasible in the context of intensive
aquaculture because of cost and fish welfare issues. Related
research published in the aquaculture community refers to the
term photo identification in case that biometric identification
of aquatic individuals using images is performed. Most works
target at semi-supervised identification for research where non-
invasive identification is required in order to avoid adverse
effects caused due to stress. Although there exists plenty of
research, only a few approaches make use of machine vision
methods. Even then, researchers mostly used machine vision
in order to assist photo, i.e. naked eye, identification. A rough
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subdivision of the previous approaches can be made on the
basis of the body part that was photographed. In [1], [3],
[12] the authors used lateral images of various fish species for
identification experiments. Furthermore, dorsal head or ventral
images have been used as biometric characteristics in [2], [9]
and [5], respectively. Some of these work presents promising
results, however, there are two fundamental problems with
all of them: (i) the region which contains the biometric
information needs to located manually and (ii) it has been
shown that skin patterns change over time.

Therefore, for the experiments in [4], [10] iris and lateral
skin pattern images of 330 Atlantic salmon fish were captured.
30 fish were photographed three more times with an interval
of two months in between. In [10] the fish iris has been
utilized as biometric characteristic and, apart from image
acquisition, a fully automated fish identification system has
been demonstrated. The database enabled to investigate the
distinctiveness and stability of the salmon fish iris. Results
showed that the fish iris is highly distinctive and identification
rates of over 95% could be achieved. However, the long term
experiments showed a weak stability of the fish iris which
needs to be considered in a biometric system. For feature
extraction and matching an iris-based approach inspired by
human recognition was applied, i.e. Log-Gabor filters for
feature extraction and the hamming distance for matching.
In [4] the authors propose a fully automated system using
dorsal skin pattern images of the dataset. Images were taken
for fish out of the water and in the aquarium to test real
conditions. The region of interest (ROI) containing the dot
pattern in each image was located automatically. The authors
proposed two different approaches for feature extraction and
matching. The first one, denoted as dot-based approach uses
a convolutional neural network (CNN) which is trained to
localize dots in the ROIs. A special algorithm was developed
for comparing the dot patterns, which also compensates for
shift and rotation variances. Second, Histogram of Gradients
(HOG) based feature extraction was applied which enabled to
utilize a distance metric for the matching procedure. Same as
for the dot-based approach the HOG approach was adapted to
compensate shifting in x- and y-direction. For the aquarium
images the dot-based approach showed 100% identification
accuracy for the short term dataset and it could be shown that
up to 4 months all fish could be still correctly identified. It
could be demonstrated that the dot pattern is highly distinctive
and shows a higher stability compared to the fish iris.
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Fig. 1: DB overview and USB microscope

For this work, we focus again on the fish iris for indi-
vidual fish identification in order to take up and examine
further questions. Thus, for feature extraction and matching
a CNN-based approach is employed. CNN-based approaches
outperformed traditional handcrafted feature extraction and
matching approaches for various biometric characteristics in
human recognition [13]. The question is whether a CNN-based
approach to fish iris recognition can improve identification
performance for both, the short term and the long term. Last
but not least, we want to investigate whether iris recognition
can also be used with another fish species. Thus, a new
database was captured which enables to examine if fish iris
recognition is feasible for another species and if the basic
statements vary with different fish species or not. Thus, for
the experiments a new database with iris images for European
seabass has been captured. A CNN-based feature extraction
and matching approach for fish iris recognition is employed
and assessed for the new database as well as for the Atlantic
salmon database.

First, in Sec. II the databases are introduced, followed by
the description of the identification pipeline for the texture
feature-based and the CNN-based approach. Subsequently, the
experimental setup is presented in Sec. III followed by a
discussion of the results in Sec. IV. Sec. V concludes this
work.

II. MATERIALS AND METHODS

First, the two databases (DBs) used are described and then
the individual steps of the fish iris identification pipeline are
considered in detail.

A. Atlantic salmon and European seabass Iris Image DBs

The first DB, denoted as Atlantic Salmon Iris Image
Database (ASDB) was captured from Atlantic salmon at the
NOFIMA research station in Sunndalsora, Norway. SIIDB is
the same database as utilized in [10]. In this data acquisition,
lateral salmon images were also taken of the same fish which
were used for the experiments presented in the work by [4].
The second DB, referred to as Seabass Iris Image Database
(SBDB) was collected at the Hellenic Centre for Marine
Research in Heraklion, Greece. Iris and lateral images were
also taken of these fish. Exemplary lateral salmon and seabass
images are shown in Fig. 2a and Fig.2b, respectively. For
both DBs a microscope (Dino-Lite AM3113T) was utilized
to capture the fish iris. In order to achieve a constant distance,
the microscope was fixed to the upper end of a tube which
was placed over the fish eye for the recordings (see Fig. 1).

(a) Atlantic salmon fish (b) Europena seabass fish

(c) Atlantic salmon: S1,S2,S3,S4 – Fish #F8ED5C

(d) European seabass: S1,S2 – Fish #255, #266

Fig. 2: Exemplary lateral Atlantic salmon and European
seabass images of ASDB and SBDB and exemplary iris images
from the LT datasets.

Fish were anesthetized and one iris was captured 8–16×
with the fish head showing to the left. The fish was slightly
moved and rotated between shots to create variance. Unusable
images were removed to avoid problems.

As illustrated in Fig. 1 ASDB and SBDB are subdivided
into short term (ST) and a long term (LT) datasets. For ASDB

the ST dataset is composed of iris images from 330 salmon
fish and for the SBDB ST dataset iris images of 332 seabass
fish were captured. For the LT datasets of ASDB a subset of
30 fish of the ST dataset were pit-tagged and captured again
in three subsequent sessions (S2,S3,S4) with approximately
two months time span in between. The LT dataset of SBDB is
composed by 32 fish out of the respective LT dataset. The 32
fish were pit-tagged and captured once again after a period of
two months. Exemplary iris images for both DBs are shown
in Fig. 2c and Fig. 2d. Fig. 2c shows the salmon iris images
of one fish of the LT dataset captured in the four sessions.
In Fig. 2d the LT dataset images captured in two sessions for
two different seabass fish are shown.
B. Identification pipeline

Subsequently, the identification pipeline as applied in the
experiments is outlined.

1) Iris Localization: The first step in the pipeline is to
locate the iris in an image and to segment it from the
background. For the iris the inner and outer boundary, which
are referred to as pupillary and limbic boundary, respectively,
need to to be located. Basically, the same CNN-based semantic
segmentation-based as proposed in [10] is used. As with the
salmon iris, the limbic boundary of the seabass iris could not
be determined either, even not manually. Thus, the CNN is
only used to separate the pupillary from the background. The
pupillary groundtruth data to train a CNN for each DB is
generated in a semi-automated manner (see [10]). A two-fold
scheme has been applied for each DB to get the pupillary
boundary for each iris image. In order to approximate the

629



limbic boundary, the center of mass (CM) of the pupillary
and the mean distance value between the CM and pupillary
boundary distances are computed. The limbic boundary is then
specified by a circle centered at the pupillary CM and a radius
which is two times larger than the computed mean distance.
Exemplary segmentation results for both DBs are shown in
Fig. 2c and Fig. 2d

2) Rotational pre-alignment: Both DBs show differences in
the rotation of a fish’s iris. These were caused by the recording
protocol, where several pictures were taken when recording an
iris and the fish was moved and rotated slightly between the
individual images in order to generate variances in the data.
However, as shown in the iris images in Fig. 2c and Fig. 2d
there is less rotation in the iris images of SBDB . In order
to compensate for rotational variances the PCA and MAX
strategies as proposed in [10] are utilized. Both strategies were
suited for the Atlantic salmon iris which is not circular and
enables to determine a pre-alignment vector. The seabass iris
looks similar and thus, both strategies will be applied an evalu-
ated in this work. For principal component analysis (PCA) the
perpendicular eigenvectors of the pupil are computed and the
dominant axis is used as pre-alignment vector (Θ0). In case of
MAX the pupillary boundary is smoothed and the maximum
CM to pupillary boundary vector is utilized as Θ0.

3) Texture Feature-based fish iris recognition: As in [10],
feature extraction & matching are performed similar to clas-
sical human iris biometrics. For this purpose, the iris is polar
transformed and normalized using Daugman’s rubber-sheet
model [6]. The rotational pre-alignment vector Θ0 is used
as initial vector to unroll the iris into the polar domain.
For feature extraction the 1-D-Log-Gabor [8] based feature
extraction approach from the open University of Salzburg Iris
Toolkit (USIT) [14] is used. The calculated feature vectors are
compared with one another using the Hamming distance. For
more details we refer to [10].

a) CNN-based fish iris recognition: Deep-learning based
methods were tested in the field of human biometrics for most
biometric characteristics now [13]. This is also the case in iris
recognition (e.g. in [15]), where CNN-based methods were
able to show significant improvements in regard to the identi-
fication performances compared to traditional texture feature-
based methods. For this reason, in this work a CNN-based
approach using the triplet loss function [11] is employed. For
biometric applications, the problem with CNN loss functions,
that learn the network to classify images (e.g. the SoftMax
loss), is that CNNs are only able to identify those subjects
which have been used for the training of the CNN. If new
subjects are added to the biometric application system, then
the CNN needs to be retrained or else a new subject can
only be classified as one of the subjects that were used for
CNN training (the one that is most similar to the newly added
subject with respect to the CNN outputs). This makes the
practical application of CNNs trained with such loss functions
impossible for any biometric application including fish-eye
recognition. The triplet loss does not learn the CNN to classify
images, but to generate feature vectors from images in such a
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Fig. 3: CNN training using the triplet loss

way that they are similar for images of identical classes and
different for images of different classes. The triplet loss is
applied to three training images (a so called triplet) at once,
where two images belong to the same class (the so called
Anchor image and a sample image from the same class, further
denoted as Positive) and the third image belongs to a different
class (further denoted as Negative). The triplet loss using the
squared Euclidean distance is defined as follows:

L(A,P,N) =max(||f(A)− f(P )||2 −||f(A)− f(N)||2 + α, 0),
(1)

where A is the Anchor, P the Positive and N the Negative.
α is a margin that is enforced between positive and negative
pairs and is set to α = 1. f(x) is an embedding (the CNN
output) of an input image x. Fig. 3 shows the scheme of
learning a CNN using the triplet loss. A triplet of training
images (Anchor, Positive and Negative) is fed through the
CNN resulting in an embedding for each of the three images.
The embeddings of the three images are then used to compute
the triplet loss to update the CNN. Preliminary to CNN
training, the iris images were first uniformly aligned using
to the rotational pre-alignment vector Θ0 and then cropped
based on the approximated limbic boundary. It should be noted
that the three iris images of a triplet can come from any LT
or ST session. For fish iris recognition this means that the
CNN is trained so that the Euclidean distances between the
CNN outputs of all fish iris images of the same class (fish) is
small (no matter in which LT sessions the images have been
acquired), whereas the Euclidean distances between any pairs
of CNN outputs from iris images of different fishes is large.

We employ hard triplet selection [11] for CNN training
(only those triplets are chosen for training that actively con-
tribute to improving the model). Iris images across all sessions
(LT&ST) are used together for training so that the CNN may
learn how fish eyes change during time and recognizes fish
eyes even if they were acquired at different sessions. As CNN
architecture we employ Squeeze-Net (SqNet) [7]. SqNet is a
small neural network that is specifically created to have few
parameters and only small memory requirements.

The size of the CNN’s last layer convolutional filter is
adapted so that a 256-dimensional output vector (embedding)
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is produced. To make the CNN more invariant to shifts in
images and to increase the amount of training data, we employ
data augmentation during CNN training. We apply random
shifts in horizontal & vertical directions by first resizing the
input images to a size of 234 × 234 and then extracting a
patch of size 224 × 224 at a random position of the resized
image (±5 pixels in each direction). The CNN is trained for
400 epochs, starting with a learning rate of 0.001, which is
divided by 10 every 120 epochs.

III. EXPERIMENTAL SETUP

Basically, the experimental setup is different for the texture
feature-based and the CNN-based experiments. The main
focus is to make the results as comparable as possible.

For each DB and the texture feature-based and CNN-based
approach results are computed with three configurations: with
MAX and PCA as rotational pre-alignment strategy and for
one baseline configuration without rotational pre-alignment
which is referred to as NO. For the texture feature-based
approach for all fish iris images of a configuration in the
LT&ST dataset of ASDB&SBDB feature vectors are com-
puted. For each configuration and DB matching scores (MSs)
are computed between all feature vector pair combinations.
The MSs are computed using the Hamming distance and a shift
value of 16 was used in order to compensate for remaining
rotational variances.

For the CNN-based approach we employ a 2-fold cross
validation for each DB. The CNN is trained twice for each DB,
first using one fold for training and the other for evaluation,
and then vice versa. Each fold consists of the images from
half of the pre-processed fish iris images over all sessions
of a configuration. That means the iris images of one fish (no
matter in which session they were acquired) are all in the same
fold. The configurations are the same as for the texture feature-
based approach. We have to consider that each of the two
trained CNNs per DB (one per fold) has a different mapping
of the images to the CNN output feature space. Thus, feature
vectors of different folds cannot be compared and therefore
any performance metric has to be computed for each of the
two folds separately using only MSs between images of the
same fold. The MSs can be subdivided according to LT&ST
datasets of each DB and for each configuration. MSs computed
between feature vectors from the same session are denoted as
session MSs and MSs computed between different sessions are
referred to as temporal MSs. The score distribution (SD) com-
puted for the session MSs from the ST dataset S1 together with
the LT dataset S1 is is denoted as S1all. Furthermore, session
MSs are computed for the different sessions of the LT dataset
which results in four different score distributions for ASDB

and two for SBDB denoted S1,S2,S3 and S4 respectively.
Temporal MSs are computed between the different sessions
of the LT dataset which leads to six different comparisons
for ASDB (S1↔S2, S2↔S3, S3↔S4, S1↔S3, S2↔S4 and
S1↔S4) and to one comparison for SBDB (S1↔S2). For
limiting computational costs, we have decided to present
verification results in performance evaluation, i.e. we compute

the Equal Error Rates (EERs). Also, the EER is well suited
to compare the CNN-based results to the texture feature-based
approaches. Although not suited for practical application, the
accuracy of verification results does carry over to the accuracy
of the multiple recognition stages in identification.

IV. RESULTS AND DISCUSSION

For the experimental evaluation different aspects are as-
sessed. First, for ASDB and SBDB the CNN-based approach
is compared to the texture feature-based approach. Second,
distinctiveness and stability of the seabass iris are considered
in detail and compared to the AS results and it is assessed
if rotational pre-alignment works for the seabass iris and if
it is required for the CNN-based approach. In regard to the
stability of the fish iris it is interesting to see how the CNN-
based approach performs compared to the texture feature-
based approach.

Results for ASDB&SBDB are presented in Table I and II,
respectively. For the CNN-based results and each rotational
pre-alignment configuration, the EERs computed for each fold,
indicated by a subscript 0 or 1 in the abbreviation, and the
averaged EERs are presented. For the ASDB results in Table II
the texture feature-based results computed in [10] are shown.
The utilized configurations are the same as applied for the
SBDB texture feature-based approach as described in Sec. III.

Basically, it can be said that the CNN-based results are
significantly worse than the texture feature-based ones. Con-
sidering the LT results (ASDB&SBDB) it can be stated that the
CNN-based approach does not improve the LT verification per-
formances. Regarding the need or suitability of rotational pre-
alignment in case of the CNN-based approach the results vary.
For ASDB which shows more rotational variances than SBDB

it can be concluded that rotational pre-alignment brings quite
a bit of improvement, however, for some results rotational pre-
alignment slightly decreases the EERs. When comparing the
ASDB LT CNN-based and texture feature-based results it is
shown that the CNN-based approach is not as dependent on
rotation compensation as the texture feature-based approach.
The SBDB results indicate a high distinctiveness of the seabass
iris when looking at the texture-based results for S1all. Same
as for the salmon iris a low stability of the seabass iris is
observed. Regarding rotational pre-alignment, PCA improves
the CNN-based verification performances for SBDB . For the
texture feature-based results there is not much difference
which can be attributed to rotational pre-alignment. It should
be noted again that SBDB involves less rotational variances
and therefore the texture-based approach does not benefit from
rotational pre-alignment as shown for the LT ASDB results.
However, results indicate that rotational pre-alignment works
for the seabass iris because the EERs do not decrease in case of
rotational pre-alignment, i.e. compare the EER for NO to the
PCA and MAX EERs for the texture feature-based approach.
Fig. 4 illustrates the intra-/interclass score distributions for
S1all, PCA, SBDB for the CNN-based and the texture feature-
based approach. In contrast to the CNN-based approach, the
texture feature-based approach enables to separate the two
distributions clearly.
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NO0 13.87 15.47 20.46 38.47
NO1 6.66 8.37 10.99 37.69
NO 10.27 11.92 15.73 38.08
PCA0 5.40 7.82 15.71 34.8
PCA1 6.06 6.10 7.47 40.62
PCA 5.73 6.96 11.59 37.71
MAX0 10.27 13.42 20.17 43.63
MAX1 7.06 8.45 16.36 32.91
MAX 8.67 10.94 18.27 38.27

Te
xt

ur
e NO 0.27 0.00 1.04 25.40

PCA 0.30 0.00 1.63 22.52
MAX 0.54 0.00 2.49 23.60

TABLE I: European seabass iris verification
performances (EERs [%])
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NO0 3.39 9.5 11.54 5.25 7.08 26.44 45.60 42.46 22.37 44.08 30.31
NO1 3.50 12.40 14.39 11.88 11.18 24.31 33.97 49.89 25.6 49.16 26.02
NO 3.40 10.95 12.9 8.565 9.13 25.38 39.79 46.18 23.99 46.62 28.1
PCA0 5.70 10.46 17.43 19.02 19.11 28.89 48.58 40.48 34.24 43.19 33.05
PCA1 4.71 5.68 12.09 11.09 9.33 21.93 32.8 49.14 25.06 48.03 19.63
PCA 5.21 8.07 14.76 15.06 14.22 25.41 40.69 44.81 29.65 45.61 26.34
MAX0 2.79 8.59 11.36 12.66 15.28 12.62 40.73 51.1 11.71 43.43 19.37
MAX1 4.58 4.59 13.68 11.41 14.24 16.58 42.61 47.92 20.28 43.96 17.35
MAX 3.69 6.59 12.52 12.04 14.76 14.6 41.67 49.51 15.10 43.70 18.36

Te
xt

ur
e NO 0.65 0.71 2.52 0.15 3.91 47.02 36.94 42.74 39.14 46.16 49.37

PCA 0.92 1.03 0.29 0.19 5.88 27.91 11.69 36.4 40.67 42.81 43.05
MAX 3.94 0.45 0.21 0.06 15.02 15.52 10.32 28.35 15.42 29.28 37.84

TABLE II: Atlantic salmon iris verification performances (EERs [%])

Lighter coloured values in Table I and Table II show the EERs computed for each fold of the CNN-
based approach. Green coloured results signalize the lowest EERs computed for each ST/LT dataset.
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Fig. 4: Intra-/Interclass distribution charts for SBDB , S1all
[ X-Axis: Matching Score, Y-Axis: Probability]

V. CONCLUSIONS

Individual fish identification is required to establish con-
tinuous monitoring in intensive aquaculture in order to move
towards precision farming. Previous research showed the fea-
sibility of Atlantic salmon iris identification using a texture
feature-based approach. Results showed a high distinctiveness
but a low stability of the salmon iris.

Therefore, this work investigated if a CNN-based approach
is suited to improve the long term stability. For this reason,
the results for the salmon iris images were recomputed using
a CNN-based approach and for a new DB with iris images
from European seabass. Furthermore, rotational pre-alignment
was applied to assess if it is required for the CNN-based
approach and if it is applicable to the seabass iris. For seabass
additionally results using the texture feature-based approach
were computed. This enabled to assess if iris recognition is
applicable to another fish species and if the basic statements
are the same as for the salmon iris.

Same as for salmon, results indicate a high distinctiveness
of the seabass iris but it shows a low long term stabil-
ity. Interestingly, the CNN-based approach performs worse
compared to the texture feature-based approach. Regarding
rotational pre-aligment it can be stated that it is required for the
texture feature-based approach. For the CNN-based approach
the improvement due to rotational pre-alignment is not that
significant. The lower recognition accuracy of the CNN-based
approach might be attributed to the relatively small amount of
data. Therefore, we will refine the evaluation by looking at k-

fold cross validation results with increasing k (which requires
increasing training effort of course). Future work needs to deal
with iris images captured in a realistic environment.
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