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Abstract—In this paper, a quick approach based on polygon
mirror flip is presented and implemented for millimeter-wave
secure communication. A known set of the transmitting weight
vector is used to reconstruct the polygon, followed by a mirror
flip operation. To ensure that the phase solution is possible, the
mirror flip procedure employs the sum of the vector set as the
mirror axis vector, ensuring that only the phase of the vector
polygon is changed, not the size of its edges. This approach is
similar to directional modulation (DM) in that it allows data
to be received precisely at the predicted time but distorts it if
it is received in an unexpected location. Furthermore, when a
high number of transmitting antennas are present, the approach
retains a short computation time.

I. Introduction
Millimeter-wave has been widely used in the Internet

era due to its extremely wide bandwidth and free spectrum
[1]–[3]. Even though millimeter-wave transmission is a new
wireless transmission technique, it is just as vulnerable
to eavesdropping as regular wireless systems, resulting in
data loss. Physical Layer Secure (PLS) technology is a
critical solution to this challenge [4]–[6].

In recent years, PLS technology has made great progress
[7]–[18]. The authors of [10] [11] presented a phased-
array-based DM approach for transmitting information
by varying the weights of each antenna. The authors of
[12] [13] presented a polygon-construction-based transmit
weighting approach, which creates transmit weights in
the multipath situation by generating polygons. The
authors of [14] suggested an orthogonal vector approach
for direction modulation, which is used in conjunction
with the artificial noise concept to accomplish direction
modulation.

Millimeter-wave has a short wavelength, allowing a high
number of antennas to be integrated. A new technique
called antenna subset modulation (ASM) is presented in
[15], with the core notion of driving the antenna subset
to modulate the beam pattern. The authors of [17] [18]
formulated the SNR and SER of a subset of antennas to
further improve the security performance of the system.

It is worth noting that only [12] can transmit data
safely in the multi-path situation. When faced with a
large number of antennas, however, the running time of
the method in [12] for creating the transmit weight vector
is long. In this paper, we present a method for quickly
constructing the transmitting weight vector based on
polygon mirror flip, which is based on the method in [12].

If a set of the transmitting weight vector is already known,
the mirror flip operation can quickly generate a new
transmitting weight vector, which can then be encrypted
for transmission. Because the mirror flip operation only
involves simple operations, the new weight vectors can be
constructed fast, and the method is applicable in both
single and multi-path scenarios.

II. Preliminaries
A. System model

Suppose there is a multiple-input single-output (MISO)
system with N transmitting antennas and single receiving
antenna. We consider a uniform linear array (ULA). The
data is transmitted to the desired receiver (Bob) in the
presence of Q potential eavesdroppers (Eves). The signals
received by Bob and the q-th Eve at discrete time k are
written by

yd(k) = hHx(k) + η(k) (1)
yq(k) = gH

q x(k) + νq(k), q = 1, · · · , Q (2)

where h ∈ CN is the channel vector between the trans-
mitter and Bob, gq represents the channel vector between
the transmitter and the q-th Eve, x is the transmit signal
vector, η ∼ CN (0, σ2

d) and νq ∼ CN (0, σ2
q ).

Consider an extended Saleh-Valenzuela geometric model
with multipath channels, where the channel vector is

h =
√

1/Ld

Ld∑
l=1

αla(ψl) (3)

where Ld is the number of channel paths, αl ∼ CN (0, 1)
is the gain of the l-th path, ψl is the angle of departure
(AoD) of the l-th path, a(ψ) ∈ CN represents the array
response vector at ψ as

a(ψ) =
[
1, ej2πdsin(ψ)/λ, · · · , ej2π(N−1)dsin(ψ)/λ

]T (4)

where λ is the wavelength, d stands for the distance
between adjacent sensors. The channel vector gq has a
similar expression to h.

We consider a basic phased array system. The symbol
received by Bob at time instant k is

yd(k) = hHw(k)x(k) + η(k) (5)

where w is the transmitting weight vector, x(k) =√
Ese

jζ(k) is the modulated transmitting signal.
√
Es
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denotes the baseband modulation amplitude, ζ(k) is the
phase value of the transmitted message.

The data emitted by the transmitting weight vector can
be easily eavesdropped, hence the time-varying transmit-
ting weight vector is required for system security.

B. Geometrical interpretation of solving the weight vector
Denote φn = ∠wn and ϑn = ∠hn, n = 1, · · · , N . One

can express hHw as

hHw =

N∑
n=1

h∗ne
jφn =

N∑
n=1

|hn|ej(φn−ϑn) (6)

where hn represents the n-th entry of h, n = 1, · · · , N .
Define

ϕn ≜ (φn − ϑn)2π, n = 1, · · · , N. (7)

Then, a qualified weight vector w can be obtained by solv-
ing Equation (8) with respect to the phases ϕ1, · · · , ϕN :

N∑
n=1

|hn|ejϕn = |h0| (8)

where |h0| is the beam gain at Bob. In the complex
plane, |hn|ejϕn in (8) corresponds to a vector, denoted
as

−−−−−→
|hn|ejϕn ≜

[
ℜ(|hn|ejϕn),ℑ(|hn|ejϕn)

]T. With this geo-
metric concept, one can rewrite (8) as

−−−−−−→
|h0|ejϕ0,⋆ +

N∑
n=1

−−−−−→
|hn|ejϕn =

−→
0 (9)

where ϕ0,⋆ ≜ π is defined for the use convenience.
To solve Equation (9), the author of [12] proposed

a method based on polygon construction to obtain the
phase solution. We can obtain the ultimate φn once we
know ϕn and ϑn, and the transmitting weight vector can
be written as w = [ejφ1 , · · · , ejφN ]T. Different from the
polygon construction algorithm in [12], in this paper we
present a new method for transmitting weight design via
polygon mirror flip.

III. A Geometric Solution via Polygon Mirror Flip
A. Principle of polygon mirror flip

In general, any drawing can be flipped mirror image
along one axis to produce a drawing with the same shape
as the original. Assuming that there is a complex vector−−−→
|b|ejϕ, its corresponding two-dimensional coordinate is
expressed as b ≜ [ℜ(|b|ejϕ),ℑ(|b|ejϕ)]T = [bR, bI ]T, and
the mirror axis is c = [cR, cI ]T. There exists a householder
matrix, denoted as

H2×2 = I− 2uuT (10)

where
u = [uR, uI ]T =

[−cI , cR]T
∥c∥

(11)

The mirror vector of b with respect to c is Hb. We define
Tc(b) as the mirror vector of b with respect to c because

( )

(
)

Fig. 1. Mirror flip operation

the mirror flip operation will be referenced multiple times
later.

In the following, we will extend that to the case of
numerous vectors. Suppose we know in advance that
there is a set of vectors bpre = [bT

1,pre, . . . ,b
T
M,pre]

T
2M×1,

where bm,pre is the two-dimensional coordinate rep-
resentation of the complex vector

−−−−−−−−−−→
|bm,pre|ejϕm,pre .

bm,pre ≜ [ℜ(|bm,pre|ejϕm,pre),ℑ(|bm,pre|ejϕm,pre)]T, ∀m ∈
{1, . . . ,M}. Define a mirror axis vector as

s =

M∑
m=1

bm,pre (12)

To put it another way, the mirror axis is the vector sum
of the complex vector group. After the mirror flip, the new
vector group is

bnew = [Ts(b1,pre)T, . . . , Ts(bM,pre)T]T2M×1 (13)
= [bT

1,new, . . . ,b
T
M,new]

T

The sum of the new vector group is

M∑
m=1

Ts(bm,pre) (14)

The sum of the complex vector sets after the mirror flip
is still s since the mirror flip operation only changes the
direction of the original vector, not its size. Figure 1 can
likewise be used to make the relevant conclusion, i.e.

M∑
m=1

Ts(bm,pre) = s =

M∑
m=1

bm,pre (15)

To summarize, the mirror flip operation allows the discov-
ery of novel phase solutions by altering the direction of
each vector without changing the total size of its vector
group.
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B. Construct weight vector via polygon mirror flip
Following the system model and associated notation in

Section II, the complex vector group of h and w can be
expressed as

ṽpre = [vT
1,pre, . . . ,v

T
N,pre]

T
2N×1 (16)

where vn,pre is the two-dimensional coordinate represen-
tation of

−−−−−→
|hn|ejϕn , vn,pre ≜

[
ℜ(|hn|ejϕn),ℑ(|hn|ejϕn)

]T
=

[vn,pre,R, vn,pre,I ]T, ϕn,pre = (φn + ϑn)2π, n = 1, · · · , N .
Based on the preceding conclusions, we only need to
perform a mirror flip operation on the set of complex
vectors in (9) to obtain a new set of weighted phase
solutions. Specify the mirror axis vector as

s̃ =

N∑
n=1

vn,pre (17)

where s̃ is the two-dimensional coordinate representation
of

∑N
n=1

−−−−−→
|hn|ejϕn . After the mirror flip, the new complex

vector group is

ṽnew = [Ts̃(v1,pre)
T, . . . , Ts̃(vN,pre)T]T2N×1 (18)

The new phase solution, according to the above mirror
flip theory, still satisfies Equation (9). So the new phase
solution of the weight vector is denoted as

φ̃n,new = (ϕ̃n,new + ϑn)2π, n = 1, · · · , N. (19)

As a result, the new weight vector can be built as
w̃new = [ejφ̃1,new , · · · , ejφ̃N,new ]T.

By mirror flipping the complete collection of complex
vectors, the approach above creates a new weight vector.
However, with this strategy, we can only get one set of
solutions, and we require various weight vectors at time
instant k.

Since the mirror flip operation does not transform the
size and vector sum of the complex vector group, we en-
visage grouping vpre = [vT

1,pre, . . . ,v
T
N,pre]

T
2N×1 and then

mirror flipping each group of complex vectors separately,
using the vector sum of each group as the mirror axis. Each
group gets a new phase in this way, as long as the total
of the final vectors stays the same. The number of groups
and vectors in each group are fully random throughout
the procedure, hence the final phase solution is completely
random as well.

To start, we partition the vpre into K groups, with
v
(k)
pre = [v

(k) T
1 , . . . ,v

(k) T
Lk

]T being the k-th group. The
mirror axis vector of the k-th group can be written as

sk =

Lk∑
Lk=1

v
(k)
Lk
, Lk ≥ 2, k = 1, . . . ,K. (20)

Then the householder matrix of the k-th group is:

H
(k)
2×2 = I− 2uuT (21)

where

u = [uR, uI ]T =
[−sk,I , sk,R]T

∥sk∥
(22)

After the mirror flip, the new complex vector group is

v(k)
new = [ILk

⊗H
(k)
2×2]v

(k)
pre (23)

= [Tsk(v
(k)
1 )T, . . . , Tsk(v

(k)
Lk

)T]T

K∑
k=1

Lk = N, Lk ≥ 2, k = 1, . . . ,K.

Given that the new phase is solved by grouping and then
mirror flipping, the grouped vectors must be combined in
their original order. To make things easier, we will use
a permutation matrix to group the entire set of vectors,
then do a mirror flip, and finally utilize the permutation
matrix to finish the order reset.

Assume we have a permutation matrix P, so that the
grouping operations can be simplified to

Pvpre = P[vT
1,pre, . . . ,v

T
N,pre]

T

= [v(1) T
pre ,v(2) T

pre , . . . ,v(K) T
pre ]T (24)

The overall mirror matrix can be written as

Y =


IL1

⊗H
(1)
2×2 0 . . . 0

0 IL2
⊗H

(2)
2×2 . . . 0

...
... . . . 0

0 0 . . . ILK
⊗H

(K)
2×2


(25)

YPvpre is the matrix following the mirror flip. A last
sequential recovery is required for the entire, so the final
new complex vector group is

vnew = PTYPvpre (26)
= [vT

1,new, . . . ,v
T
N,new]

T (27)

where vn,new is the two-dimensional coordinate represen-
tation of

−−−−−−−−−−−→
|hn,new|ejϕn,new , ϕn,new = ∠vn,new. As a result,

the weight vector’s new phase solution is denoted as

φn,new = (ϕn,new + ϑn)2π, n = 1, · · · , N. (28)

Eventually, wnew = [ejφ1,new , · · · , ejφN,new ]T is the new
collection of weight vectors. To summarize the preceding
procedure, the new set of various weight vectors is created
by mirror flipping the set of different retest groups. We
summarize the process for calculating Equation (9) based
on the mirror flip of the polygon in Algorithm 1 to make
the preceding discussion clear. The number of groups and
the vectors in the groups are fully random in the mirror
flipping process, hence the final set of weight vectors is
likewise completely random.
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Algorithm 1 : Geometric Solution via Polygon Mirror Flip
1: Input: {h0, h1, · · · , hN}, {w1, w2, · · · , wN}
2: Initialize: ϑn = ∠hn, φn = ∠wn, ϕn = (φn −
ϑn), sum = 0. v = [vT

1 , . . . ,v
T
N ]T, where vn ≜

[ℜ(|hn|ejϕn),ℑ(|hn|ejϕn)]T. Randomly set integer k,
k ∈ (0, n/2).

3: Set k random numbers, denoted as
n1, . . . , nk,

∑k
k=1 nk = N

4: Randomly set permutation matrix PN×N
5: vsort = Pv
6: for i = 1, 2, · · · , k do
7: if sum <= N then
8: v(k) = vsort(sum : sum+ nk)

= [v
(k) T
1 , . . . ,v

(k) T
Lk

]T

9: sum = sum+ nk
10: sk =

∑Lk

Lk=1 v
(k)
Lk

11: H
(k)
2×2 = I− 2uuT , u =

[−sk,I , sk,R]T
∥sk∥

12: end if
13: end for
14: Construct an overall mirror matrix Y
15: vnew = PTYPv
16: ϕn,new = ∠vn,new, φn,new = (ϕn,new + ϑn)2π
17: Output: {φ1,new, . . . , φN,new}

IV. Numerical Results

In this section, we will use the proposed method to con-
struct a weight vector for transmitting data for simulation.
The simulation results prove the effectiveness and rapidity
of our proposed algorithm. We use a 15-element ULA and
consider multi-path mmWave channels described in (3).
Assume that the AoD of each path is uniformly distributed
at [0, π]. For simplicity, we set

√
Es = 1 and |h0| = 4.

To demonstrate the proposed algorithm’s performance, we
compare it to the polygonal construction method in the
literature [12].

A. Constellation synthesis results for the proposed algo-
rithm

We first consider the security of the algorithm when
transmitting data. In this simulation, we focus on two
Eves and a Bob just for sake of generality. The polygon
construction method, which we described earlier, is used
to develop the initial solutions. The polygon mirror flip
method was used to generate the next set of solutions,
and once the initial solution was established, additional
solutions were continuously generated to propagate the
symbols. We used 1000 time instants and different mod-
ulation approaches.

To begin, we ran simulations with QPSK modulation.
Figure 2(a) shows the constellations that were received
without any noise. Bob’s composite constellation is shown
by the red dots, while the green and blue dots represent the
first and second Eve constellations, respectively. As shown

(a) (b)

(c) (d)

Fig. 2. Noiseless received constellations at Bob and Eves with
different modulation methods. (The red color points represents
Bob’s composite constellation, the green and blue ones represent
the constellation of the first Eve and the second Eve.) (a) QPSK
modulation. (b) 8-PSK modulation. (c) 16-QAM modulation. (d)
64-QAM modulation.

in Figure 2(a), only four points were synthesized by Bob
and the resulting constellation was not distorted, while the
constellation generated by Eves was completely random,
making it difficult for Eves to extract this information.

Following that, we added 8-PSK and QAM modulation
to the simulations. Figures 2(b), 2(c), and 2(d) show the
simulation results, which show that the method works well
to distort the constellation of Eves and achieve secure data
transfer even when different modulation schemes are used.

B. Security performance of the proposed algorithm
In this subsection, we will consider an Eve and study

the security performance of the proposed algorithm. For
comparison, we include the polygon construction method.
To study the security performance of the proposed al-
gorithm, we used SER simulation. The simulated SERs
at Bob with different algorithms is shown in Figure 3(a)
with signal-to-noise ratios ranging from -10dB to 30dB
using QPSK and 8-PSK modulation, respectively. The
SERs for the 8-PSK modulation in the proposed algorithm
are slightly larger than those for the QPSK modulation
due to the modulation mechanism, similar to the polygon
construction method.

Figure 3(b) shows the simulated SERs for Eve, and we
can see that, similar to the polygon construction approach,
the proposed algorithm consistently maintains a high SER
for each modulation method, showing that the suggested
algorithm’s safety performance is fairly good.

C. Computational performance of the proposed algorithm
In this subsection, we will discuss the computational

performance of the proposed algorithm. Despite the fact
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Fig. 3. SER simulation results for Bob and Eve with QPSK and
8PSK modulation. (a) Bob. (b) Eve.
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Fig. 4. Time comparison of different algorithms

that our proposed algorithm is based on the polygon
construction method, it should take significantly less time
to compute than the polygon construction method because
it only contains basic operations.

In this simulation, we set the time instants to 200 and
the number N to a range of 20 to 3000 in steps of 20,
and we measured the time it took both algorithms to
transfer the data. Figure 4 depicts the simulation findings
received. The time spent on the Polygon Construction
method is represented by the red line in the graph, while
the time spent on the proposed approach is represented by
the green line. The running time of the polygon creation
approach steadily grows as N increases, much more than
the time of the proposed algorithm, as shown in Figure
4. Furthermore, the proposed algorithm’s time does not
considerably raise as N increases, demonstrating the pro-
posed algorithm’s outstanding computing performance.

V. Conclusion
In this paper, the polygon mirror flip method is pro-

posed as a new weight vector production method. Because
the mirror flip operation only changes the phase of the
vector and not its magnitude, the sum of the vector
group is utilized as the mirror axis, allowing each mirror
operation to yield a new phase solution. Furthermore,
employing the polygon mirror flip method to transmit
data reduces the risk of being eavesdropped greatly. It’s
worth mentioning that the proposed polygon mirror flip
approach outperforms the polygon construction method

in terms of computational performance and enables rapid
weight vector synthesis even in the scenario of large-scale
antenna array.
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