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Abstract—When operating massive multiple-input multiple-
output (MIMO) systems with uplink (UL) and downlink (DL)
channels at different frequencies (frequency division duplex
(FDD) operation), acquisition of channel state information (CSI)
for downlink precoding is a major challenge. Since, barring
transceiver impairments, both UL and DL CSI are determined by
the physical environment surrounding transmitter and receiver,
it stands to reason that, for a static environment, a mapping from
UL CSI to DL CSI may exist. First, we propose to use various
neural network (NN)-based approaches that learn this mapping
and provide baselines using classical signal processing. Second,
we introduce a scheme to evaluate the performance and quality of
generalization of all approaches, distinguishing between known
and previously unseen physical locations. Third, we evaluate all
approaches on a real-world indoor dataset collected with a 32-
antenna channel sounder.

I. INTRODUCTION AND PROBLEM STATEMENT

Massive multiple-input multiple-output (MIMO) is widely
accepted to be a crucial technology for increasing the spectral
efficiency of future cellular wireless systems through spatial
multiplexing. At the multi-antenna basestation (BS), it relies
on precoding in the downlink (DL) direction, which requires
accurate channel state information (CSI) for the channel
between BS and user equipment (UE). The BS estimates CSI
for the uplink (UL) channel from pilots transmitted by the UE.
In time division duplex (TDD) operation, thanks to channel
reciprocity, DL CSI can be directly derived from UL CSIL
If, however, UL and DL channels are at different frequencies
(frequency division duplex (FDD) operation), acquisition of
DL CSI is challenging. Sending downlink pilots and obtaining
CSI feedback from UEs produces overhead that can become
prohibitively large for high numbers of antennas [1].

Even as massive MIMO was originally conceived, it was
conjectured that DL. CSI feedback in FDD operation could
be rendered unnecessary by exploiting relationships between
UL and DL CSI [2, Section VILJ]. For example, in typical
radio environments, measurements have indicated that angles
of arrival and departure are similar for UL and DL channels
[3]. However, in environments with many scatterers and poten-
tially more than one strong propagation path, the relationship
between UL and DL CSI is no longer this simple. Under the
premise that the mapping from UL CSI to DL CSI is bijective,
which is reasonable to assume for many practical environments
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Fig. 1: Basic principle of operation

[4], a dense neural network (DNN) is capable of learning
this mapping. This learning-based approach, illustrated in
Fig. 1, has been proposed in several earlier publications and
has been evaluated on simulated channel models [1] [5]. By
contrast, experiments with measured channel data are rare [6]
and cannot be replicated without the underlying datasets. We
address these issues by making the following contributions:

« We derive upper and lower bounds for downlink precod-
ing performance in Section II.

o In Section IV, we verify the concept of deep learning-
based CSI estimation, which has primarily been devel-
oped with simulated channels, on a measured, publicly
available CSI dataset, which is introduced in Section III.

« In Section V, we compare the quality of DL CSI estimates
for different neural network (NN) architectures for our
particular dataset and propose an evaluation framework
for different network architectures that takes into account
the difference in the quality of estimates in previously
seen and unseen regions of the physical environment'.

YA tutorial for a special case of DL CSI estimation is available at
https://dichasus.inue.uni-stuttgart.de/tutorials/tutorial/downlinkcsi/
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II. MODEL, METRICS AND BASELINES

In the context of this work, we always consider the case of
a single BS antenna array with M co-located antennas and a
single UE with one antenna. We assume orthogonal frequency
division multiplex (OFDM)-modulated signals for both uplink
and downlink, but restrict ourselves to estimating the CSI for
a single subcarrier in the downlink channel. It is important to
note that this approach can easily be extended to all subcarriers
in the downlink channel by using one estimator per subcarrier.

We denote the unknown channel coefficient vector for this
particular DL subcarrier by hp € CM. We assume that UL
channel coefficients Hy € CM*Nsub for all antennas and all
Ngup uplink subcarriers are known to the BS. We furthermore
neglect hardware impairments and noise and assume that both
UL and DL CSI are determined by some latent variable x,
which captures all properties of the radio environment such as
location and orientation of transmitter, receiver and scatterers:

fUZX’—)HU and fD2X0—>hD (1)

In Eq. (1), fu and fp are deterministic mappings from
environment properties x to UL and DL channel coefficients,
respectively. If fy is bijective, which has been argued to be
probable in practical environments [4] [7], and the BS is
capable of learning fp o fi; ! which NNs are theoretically
capable of according to the universal approximation theorem,
it can compute hp as hp = fp o f§ ! (Hy). In practice,
fu may only be bijective on a (large) subset of the domain,
the universal approximation theorem only holds for arbitrarily
large NN sizes, only limited training data is available and
UL channel estimates are noisy, hence the learned mapping
6 : Hy — w will only produce an estimate w € CM,
w = hp for the true downlink channel hp.

A suitable metric for the quality of the estimate w for one
particular realization of the channel is given by the squared
cosine similarity of hp and w:
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In contrast to a mean squared error (MSE) metric, the
expression for P in Eq. (2) has the advantage of being inter-
pretable as the normalized received power on the considered
downlink subcarrier at the UE when precoding with vector
w* and transmitting across the channel hp. In this sense, a
normalized received power of P = 1 corresponds to perfect
knowledge of the downlink channel down to a global phase
rotation, i.e., w = e/?hp with arbitrary ¢ € R.

Eq. (2) refers to one particular downlink channel hp and
estimate w. In practice, w is estimated at the BS based on Hy,
ie., w = 0 (Hy), and Hy and hp are modelled as random
variables that are jointly distributed over some distribution #:

(Hy,hp) ~H

To obtain a more universal indicator P for the performance
of a DL CSI estimator 8, we consider the expected value of

P, i.e., the average normalized received power, over the whole
distribution H:
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Without any knowledge about H, it is still possible to
achieve an average normalized received power of P = ﬁ
through the use of random precoding vectors, as the following

theorem will show.

Theorem 1 (Random Precoding Baseline). For any arbitrary
distribution (Hy,hp) ~ H, random precoding with channel
estimates w € CM | w := Ty Where v ~ CN(0,1y) and
independent of hp, Hy leads to an expected received power

Ihng} _ 1
[hpl> ] M
Proof. Noticing that hp and w are independent and since

hEw|? = hHEwhTw*, we can exchange the order of the
expectation operator and the scalar product sums in Eq. (4):

prand =E l: (4)

M M
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Next, we need to show that Elw,wi] = 0 for i # j.

For this, first note that the distribution of v is invariant
under unitary transformations (), and so is w since Qw =
In particular, this implies that the distributions of
w = JWiy oWy, .. and W= (Lo —wg, L wy, L)
are 1dentlca1 and hence E [w;w}| = —E [w wi] =0.

With this, P,.,q further 51mphﬁes to

W o HQVH

_ 1
P, =E —_— %11 .
rand hp ||hD| . w Uwz‘ ]]
For symmetry reasons, E [[wi]?] = E [Jw;?] for
any i,j. Hence, Ey [wflw] = E, [Zf\il lw;|?| =

M .
>t Bw [Jwi?] = M Ey L|wz\2] Since whw = ||w|? =1,
we find that Ey, [|w;|?] = 57 for any i:

M
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Since Zgl h} ihp.i = |lhp||?, all terms depending on hp
cancel, which proves that Eq. (4) holds for arbitrary H:
Prand = EhD |:Z\14:| = % O
For real channels, random precoding is not a fair benchmark
to compare NN-generated estimates against, since it does not
take the prior distribution of hp over a dataset into account.
A badly designed NN could just learn the prior distribution of
hp and not extract information from Hy. As another baseline,
Theorem 2 describes a precoding technique with a constant DL
channel estimate w that exploits a-priori information.
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Theorem 2 (Principal Component Baseline). To maximize the
mean normalized power P over the distribution (Hy, hp) ~
‘H under the restriction that the DL channel estimate w is con-
stant and ||w|| = 1, w must be chosen such that W = Wy,

where Wi IS the eigenvector corresponding to the largest
. . . hph

eigenvalue of the auto-correlation matrix R := Ey, ﬁ]
D

We define

IhEWT
Porine := max Ep {

PR wi= T | [hp 2
Proof. The objective is to find w,,x according to
|:WHhDth]

Wmax = argmax By NE

l[wil=1
= argmax w Rw.
llwll=1
By taking the derivative of the Lagrange function £(w) =
wHRw — \(wfw — 1) with respect to w, we find that Rw =
Aw. Hence, w is an eigenvector of R and the function in

Wax = argmax wHRw = arg max wiiw
lwll=1 lwll=1

is maximized if w corresponds to the largest eigenvalue A\. [J

III. MEASUREMENT DATASET

For evaluating our deep learning-based CSI estimation, we
draw on a dataset measured with our own channel sounder
called Distributed Channel Sounder by University of Stuttgart
(DICHASUS) [8]. More specifically, we use a publicly avail-
able indoor dataset entitled dichasus-015x measured with an
M = 32-antenna uniform planar array in a 6 m x 6 m office
room [9]. Overall, the dataset contains more than 85000
position-tagged CSI datapoints captured at a carrier frequency
of f. = 1.272 GHz. Each CSI datapoint was estimated from
multiple OFDM symbols with Ng,;, = 1024 subcarriers spread
over a bandwidth of 50 MHz. We averaged over batches of 32
neighboring subcarriers for the purpose of DL channel esti-
mation, obtaining a total of 32 averaged channel coefficients.

From this large 50 MHz bandwidth, we collect channel co-
efficients within some ranges into virfual uplink and downlink
channels. As shown in Fig. 1, we grouped the channel coeffi-
cients for averaged subcarriers 0-7 to be the virtual UL channel
(Hy) and we call the channel coefficients for subcarrier 28 the
virtual DL channel vector (hp). Note that the CSI dataset was
measured with all antennas in the array exclusively operated
as receivers at carrier frequency f., but, thanks to channel
reciprocity, the same channel coefficients can be assumed
for the DL direction. Our choice corresponds to a virtual
UL channel with a bandwidth of 12.5 MHz centered around
fe,ur, = 1.2533GHz and a virtual DL channel coefficient
measured at carrier frequency fcpr, ~ 1.2915GHz. The
center frequencies of uplink channel and downlink subcarrier
are separated by fcpr, — fo,ur, ~ 38.2 MHz.

Through random precoding according to Theorem 1, it is
always possible to achieve a mean received power of Prond =
25, Prandlas &= —15dB, i.e., approximately 15dB less on

average than is possible if the true channel vector hp was
known by the BS. When precoding with the optimal constant
DL channel estimate wy,,x according to Theorem 2, we find
that it is possible to achieve Pprinc|dB ~ —8.8dB just by
exploiting the prior distribution of the dataset. The distribution
of received powers over the dataset’s measurement area for this
case is illustrated in Fig. 2a: Precoding with wy, ., generates
a single broad, forward-facing beam.

IV. DEEP LEARNING-BASED CSI ESTIMATION

We evaluate five different deep learning-based downlink CSI
estimators @ which produce an estimate w from Hy:

« A DNN: This simple architecture consists of four dense
layers as shown in Fig. 3b.

« A DNN with dropout: Same as the DNN architecture,
except for a dropout layer with dropout rate § inserted
between dense layers 2 and 3, to improve generalization.

« An Encoder / Decoder structure with arbitrary latent
space: both encoder and decoder consist of three dense
hidden layers each. The encoder reduces Hyy, to a latent
space representation X € R, that the decoder infers hp
from, see Fig. 3a. This choice of network architecture
is justified in the fact that, as explained in Section
II, both Hy and hp are entirely predetermined by a
possibly sparser latent representation x. The Encoder may
be able to approximate fi; ! whereas the decoder may
approximate fp.

« An azimuth angle-based Encoder / Decoder structure,
i.e., the latent variable is forced to be an azimuth angle:
Same as the previous architecture, except that encoder
and decoder are now first trained separately: The encoder
is trained to estimate the azimuth component « of the
angle of arrival (AoA) from Hy and the decoder is
trained to generate hp from «, both supervised using
position labels. The two NN are then connected in series.

« An azimuth and elevation angle-based Encoder /
Decoder structure, i.e., the two latent variables are
forced to be elevation / azimuth angle estimates: Same
as the previous architecture, except that the encoder
now consists of two separate DNNs, for estimating both
azimuth component « and elevation component 3 of the
AoA. Again, the decoder is not trained on estimates, but
on AoAs computed from position labels.

As a training loss function, we employ ¢ = 1 — P, where P

is the squared cosine similarity between estimated channel w
and true channel hp as defined in Eq. (2). Instead of working
with complex-valued channel coefficients, all NNs process
channel coefficients in real / imaginary part representation.
For Fig. 2b, we randomly assigned 50 % of all datapoints to
the training set, trained the previously described DNN (without
dropout) on this set and evaluated the DL CSI estimates on the
complete dataset. The mean normalized received power over
the complete dataset was found to be P|gp ~ —1.3dB.

For Fig. 2c, on the other hand, we partitioned the dataset

into training set and test set in a checkerboard pattern with
square side length 2m: All datapoints that were measured on
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Fig. 3: Architecture of different evaluated NNs

“white” checkerboard squares were assigned to the training
set, all datapoints measured on “black” checkerboard squares
to the test set. After evaluating the trained NN on both training
and test set, it is easy to see that the performance on the two
sets differs significantly, with P|qg ~ —0.9dB on the training
set and P|dB ~ —4.2dB on the test set. Clearly, this indicates
that the DNN is overfitting on the training set: It is not able
to produce channel estimates w with comparable normalized
DL power on unseen regions of the physical space.

This poses the question as to how this overfitting can be mit-
igated, either through standard methods such as adding dropout
layers or by forcing the DNN to learn a sparser latent space
representation. To formalize our enquiry into this topic into a
quantifiable manner, we introduce a framework for evaluating
the ability to generalize of different NN architectures.

V. A FRAMEWORK FOR EVALUATING GENERALIZATION

A. Defining Generalization

In the context of DL CSI estimation, we refer to general-
ization not as the ability to generalize from training set to test
set in the same physical area (which a DNN can do well on

our dataset, as is apparent from Fig. 2b), but as the ability to
generalize from areas of the physical environment seen during
training to areas that were not represented in the training set
(which, considering the result in Fig. 2c, is much harder).
Therefore, when talking about the quality of CSI estimates,
it is insufficient to just measure a single performance metric:
Some NN architectures perform well in seen areas, but worse
in unseen locations whereas other architectures generalize
better, but at the cost of a worse performance in seen areas.
To quantify this observation, as previously, the dataset is
split into training and test set in a checkerboard pattern, with
square side length a. If a is chosen to be small, the training
set will contain a CSI datapoint in physical proximity of each
(unseen) test set location. For large values of a, the NN needs
to be able to generalize across larger distances. We define
P.een to be the average received power (see Eq. (3)) when
evaluating the trained NN on the training set, and Pnseen 1O
be the average received power after evaluation on the test set.
P.eon, can be interpreted as the average loss in received power
due to the suboptimal channel coefficient estimates. We expect
Pseen > Punseens SO Punseen|dB - Pseen|dB < 0dB can be
interpreted as the loss in average received power incurred in
unseen areas due to lack of training data in physical proximity.

B. Seen/Unseen Loss Diagram and Baselines

To visualize NN performance, we propose a seen/unseen
loss diagram as in Fig. 4, with losses Pieen|qp on the
horizontal axis and Pypseen|dB — Pscen|ds on the vertical
axis. In any case, the random precoding strategy from Thm.
1 provides a lower bound on the achievable performance
(blue line and region). The best performance is achieved if
perfect DL CSI is available at the receiver at all time, so that
Picon|dB = Puanscen|as = 0dB; this operating point is marked
with “TDD”, since, assuming perfect channel reciprocity, it
is achievable by a TDD system. For all other estimators,
the performance in seen and unseen areas depends on the
partitioning of the dataset into training and test set. For Fig.
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Fig. 4: Seen/unseen loss diagram with mean received power losses of different NN architectures and baselines on seen / unseen
checkerboard fields, for grid sizes from 0.5m to 1.8 m. A larger grid size is indicated by a larger marker size.

4, this partitioning was performed in the afforementioned
checkerboard pattern. The grid size parameter a was swept
from 0.5 m to 1.8 m with a step size of 0.1 m. As an additional
baseline, based on Thm. 2, we compute w,,x based on the
training set and evaluate this vector for both training set
(Pieen) and test set (Pypseen)s yielding the principal component
baseline (marked “Princ. Comp.”) also illustrated in Fig. 4.

C. Discussion of Results

Among all tested NNs, the DNN without dropout performs
best on previously seen data (i.e., with respect to Pseen\dB).
Increasing the dropout rate § to § = 0.25 or 6 = 0.5 leads
to a deteriorated performance with respect to P.cen, but better
generalization. Surprisingly, both encoder / decoder structures
without predetermined latent space perform approximately
equally well, regardless of the latent space dimensionality (R*
or R?), which may indicate that a sparse representation of
CSI is indeed possible. A closer look at the learned latent
representation would reveal that X € R! is highly correlated
with the azimuth angle. Despite this observation, encoder /
decoder structures with predetermined azimuth « / elevation
[ latent spaces perform worse than all other NN architectures
on previously seen physical areas, but generalize better.

We find that the performance of all evaluated NN architec-
tures is significantly better than both random precoding and
principal component baselines. In fact, Pseen\dB > —3.1dB
and Punseen|dB > —3.8dB for all NNs, which demonstrates
that a NN-based approach is feasible and that some level of
generalization to previously unseen physical areas is possible.
However, Fig. 4 also clearly shows significant performance
differences between the various NN architectures and the
strong influence of the grid size on generalization.

VI. SUMMARY AND OUTLOOK

We found that NN-based downlink channel estimation from
available uplink CSI significantly outperformed the baselines

and that generalization to physical areas not represented in the
training set is one of the major challenges of the approach.
With regards to generalization, we evaluated several different
network architectures on measurement data. Thanks to the
public data, our research may be reproduced on the same
dataset or compared to other datasets captured in different
types of environments or with different antenna configurations.
The effect of the frequency separation between uplink and
downlink channel may also be studied further.
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