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Abstract—In this work, we propose an end-to-end deep-
unfolding neural network (NN) based joint channel estimation
and hybrid beamforming (JCEHB) algorithm to maximize the
sum rate in massive multiple-input multiple-output (MIMO)
systems. Specifically, the recursive least-squares (RLS) and s-
tochastic successive convex approximation (SSCA) algorithms
are unfolded for channel estimation and hybrid beamforming,
respectively. We consider a mixed-timescale scheme, where analog
beamforming matrices are designed based on the channel state
information (CSI) statistics once in each frame, while the digital
beamforming matrices are designed at each time slot based on
the equivalent CSI matrices. Simulation results show that the
proposed algorithm can significantly outperform conventional
algorithms.

Index Terms—Deep-unfolding, hybrid beamforming, channel
estimation, mixed-timescale scheme, massive MIMO.

I. INTRODUCTION

Hybrid analog-digital beamforming in massive multiple-
input multiple-output (MIMO) systems with a small number of
radio frequency (RF) chains has received a lot of attention in
recent years [1], [2]. There have been a number of algorithms
proposed for hybrid beamforming and channel estimation in
massive MIMO systems [3]–[7]. In [3] and [4] a hybrid
beamforming framework was suggested for improving the
bit error rate and system sum rate performance, respectively.
Considering hardware constraints, codebook-based methods
for hybrid beamforming were investigated in [5]. Channel esti-
mation plays an important role in hybrid beamforming design
[6], [7]. The authors of [6] developed an algorithm that uses a
Hidden Markov Model (HMM) for sparse channel estimation.
A recursive least-squares (RLS) adaptive estimation algorithm
was developed for MIMO interference channels in [7], which
can track time-varying channels as the wireless environment
changes.

Conventional single-timescale hybrid beamformers are op-
timized based on the high-dimensional full channel state
information (CSI), which leads to large signaling overhead
and transmission delay. To address these issues, several hybrid
beamforming algorithms under mixed-timescale schemes have
been investigated in [8], [9]. In this approach, long-term analog
beamformers are optimized based on the channel statistics
while the short-term digital beamformers are updated based on
reduced-dimensional CSI. However, these approaches typical-
ly require high complexity and signaling overhead. Moreover,
these two modules are generally designed separately, which
may result in performance loss. We consider a joint design
for channel estimation and hybrid beamforming with low-
complexity and reduced overhead.

In recent years, deep-unfolding neural networks (NNs) have
been applied to communications [10]–[12]. These techniques
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unfold iterative algorithms into layer-wise networks and intro-
duce trainable parameters to improve system performance. The
authors of [12] proposed a symbol detector named ViterbiNet,
which integrates black-box NNs into the Viterbi algorithm.
ViterbiNet does not obtain CSI and can be employed for com-
plex channel models with reduced computational complexity.

In this work, we propose an end-to-end deep-unfolding
scheme for joint channel estimation and hybrid beamforming
(JCEHB) design in massive MIMO systems to maximize the
system sum rate. The proposed approach consists of channel
estimation deep-unfolding NN (CEDUN) and hybrid beam-
forming deep-unfolding NN (HBDUN). For the CEDUN, we
design the pilot training module and unfold the RLS algorithm
into a layer-wise NN with introduced trainable parameters.
For the HBDUN, we propose a stochastic successive convex
approximation (SSCA) algorithm induced deep-unfolding N-
N, where the high computational complexity operations are
replaced by trainable parameters. Moreover, to reduce the
signaling overhead, we consider a mixed-timescale hybrid
beamforming scheme, where we employ the channel statistics
to update the analog beamformers once in each frame, which
consists of several time slots; while we employ the estimated
reduced-dimensional equivalent CSI matrices to design the
digital beamformers at each time slot. Simulation results show
that our proposed deep-unfolding algorithm can significantly
outperform the conventional RLS and SSCA algorithms with
reduced complexity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model for
downlink massive MIMO and then formulate our problem
mathematically.

A. System Model
1) Signal Model: Consider a downlink massive MIMO

system working in time-division duplex (TDD) mode. The
base station (BS) is equipped with Nt transmit antennas and
NRF

t RF chains, sending Ns data streams to each user at the
receiver with K users, where KNs ≤ NRF

t ≤ Nt. Each user
is equipped with Nr receive antennas and NRF

r RF chains,
where Ns ≤ NRF

r ≤ Nr. At the transmitter, the RF chains
are connected with a network of phase shifters that expands
the NRF

t digital outputs to Nt precoded analog signals feeding
the transmit antennas. Similarly, at the receiver, the Nr receive
antennas are followed by a network of phase shifters that feeds
the NRF

r RF chains. The BS sends Ns data streams to user
k ∈ K � {1, . . . ,K}, denoted as sk ∈ C

Ns×1. The received
signal vector for user k is

yk = WH
BB,kW

H
RF,kHkFRF,kFBB,ksk +WH

BB,k

WH
RF,kHk

K∑
m=1,m �=k

FRF,mFBB,msm+WH
BB,kW

H
RF,kzk,

(1)
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where Hk ∈ C
Nr×Nt represents the channel matrix,

zk ∈ C
Nr×1 ∼ CN (0, σ2

kI) is the additive white
Gaussian noise (AWGN) with σk denoting the noise

power, FRF,k ∈ C
Nt×NRF

t and WRF,k ∈ C
Nr×NRF

r are the
analog beamformers which are subject to a unit modulus
constraint, i.e.,

‖ [FRF,k]ij ‖2=
1√
Nt

, ∀k, i, j, (2a)

‖ [WRF,k]ij ‖2=
1√
Nr

, ∀k, i, j, (2b)

while FBB,k � [fBB,k,1, . . . , fBB,k,Ns] ∈ C
NRF

t ×Ns and

WBB,k � [wBB,k,1, . . . ,wBB,k,Ns] ∈ C
NRF

r ×Ns are the dig-
ital beamformers. The digital precoder FBB,k is normalized as
‖FRF,kFBB,k‖2F = Ns to ensure that the power constraint is
satisfied at the BS. Using (1), the signal-to-interference-plus-
noise ratio (SINR) for stream l of user k is

Γk,l=
|wH

BB,k,lHeq,kfBB,k,l|2
K∑
i=1

Ns∑
j=1

(i,j �=k,l)

|wH
BB,k,lH̃eq,kfBB,i,j |2+σ2

k‖wH
BB,k,lW

H
RF,k‖2

,

(3)

where Heq,k = WH
RF,kHkFRF,k ∈ C

NRF
r ×NRF

t denotes the
low-dimensional equivalent CSI matrix. The system sum rate
can be calculated as

K∑
k=1

Ns∑
l=1

log(1 + Γk,l). (4)

2) Channel Estimation: It is essential for the BS to obtain
CSI for hybrid beamforming. Here we consider the estimation
of the low-dimensional equivalent CSI. Thanks to the channel
reciprocity in TDD systems, we only need to estimate the
uplink channels. Thus, we consider an uplink pilot training
stage before data transmission. The k-th user first sends train-

ing pilots X̃eq,k ∈ C
NRF

t ×L to the BS, where L denotes the

length of pilots. Then, the received signal Ỹeq,k ∈ C
NRF

r ×L

at the BS is given by

Ỹeq,k=Heq,kX̃eq,k+W
H
RF,kHk

K∑
u=1,u �=k

FRF,uX̃eq,u+Z̃eq,k, (5)

where Z̃eq,k denotes AWGN. The transmitted pilot signal in

the l-th pilot slot (the l-th column of X̃eq,k) should meet

the power constraint: ‖x̃eq,k,l‖2 ≤ P . The BS estimates the

channel Ĥeq,k ∈ C
Nr×Nt based on the received signal Ỹeq,k

and the pilot X̃eq,k via

Ĥeq,k = F(Ỹeq,k, X̃eq,k), (6)

where F(·) denotes a specific channel estimation algorithm.
3) Hybrid Beamforming: After acquiring channel informa-

tion, the BS designs the hybrid beamformers based on the
channel Hk. For each user k, the hybrid beamforming design
scheme at the transmitter is denoted as

{FRF,k,WRF,k,FBB,k,WBB,k} = Q(Hk). (7)

B. Mixed-Timescale Frame Structure
We consider a practical mixed-timescale frame structure

as shown in Fig. 1, which takes into consideration both the
instantaneous CSI and the channel statistics. We consider
a frame during which the channel statistics are constant. It
consists of Ts time slots and the instantaneous CSI remains

Frame

1
Time slot

Channel statistics coherence time
The full CSI statistics are assumed 

to be constant

The instantaneous CSI  are supposed 
to be constant i sT

Fig. 1: Mixed-timescale frame structure.

unchanged during each time slot. We introduce two different
timescales as follows:

• Long-timescale: The channel statistics are unchanged
during each frame which consists of several time slots.

• Short-timescale: The instantaneous CSI is constant in
each time slot.

In general, the dimension of the equivalent CSI matrix

Heq ∈ C
NRF

r ×NRF
t is much smaller than that of the full

CSI matrix H ∈ C
Nr×Nt . Thus, we consider acquiring the

low-dimensional equivalent CSI at each time slot. In this way,
we optimize the analog and digital beamformers at different
timescales. We update the long-term analog beamformers
{FRF ,WRF } based on full CSI, while we optimize the short-
term digital beamformers {FBB ,WBB} based on the low-
dimensional equivalent CSI at each time slot.

C. Problem Formulation
We aim at jointly designing the mixed-timescale hybrid

beamforming and channel estimation to maximize the system
sum rate. The optimization problem can be formulated as

max
X ,Y

K∑
k=1

Ns∑
l=1

log(1 + Γk,l), (8a)

s.t. ‖ FRF,kF
i
BB,k ‖2F= Ns, ∀k, (8b)

‖x̃eq,k,l‖2 ≤ P, ∀k, l, (8c)

Ĥeq,k = F(Ỹeq,k, X̃eq,k), ∀k, (8d)

{FRF,k,WRF,k} = Qfu(Hk), ∀k, (8e)

{FBB,k,WBB,k} = Qeq(Ĥeq,k), ∀k, (8f)

(2a), (2b), (8g)

where X � {FRF,k,WRF,k,FBB,k,WBB,k} and Y �
{X̃eq,k}, Qeq(·) and Qfu(·) represent the analog and digital
beamforming design, respectively. In the following, a deep-
unfolding framework is proposed for tackling this problem.

III. MIXED-TIMESCALE DEEP-UNFOLDING

A. The Structure of the Deep-Unfolding Framework
We propose a deep-unfolding framework, the structure of

which is shown in Fig. 2. The analog and digital NNs
are designed for hybrid beamforming while the CEDUN is
designed for channel estimation for the low-dimensional CSI.
Based on this framework, we introduce the training stage and
the data transmission stage in the following.

1) The Training Stage: First, we obtain the channel sam-
ples offline1 and input them into the analog NN to obtain
analog beamformers {WRF ,FRF } and the low-dimensional
equivalent CSI matrix Heq . Then Heq passes through the
CEDUN that outputs the estimated equivalent CSI matrix
Ĥeq . Finally, Ĥeq passes through the digital NN that outputs

1If the channel statistics is known, we can obtain channel samples based
on it. If the channel statistics is unknown, we can send pilots to estimate the
full CSI at regular intervals to estimate CSI.
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Fig. 2: Architecture of the proposed deep-unfolding framework.

Algorithm 1 The RLS algorithm for channel estimation

1: Input: Pilot X̃eq,k and received signal Ỹeq,k;
2: Initialize the estimated matrix W−1

k = 0 and intermediate
variable P−1

k = δ−1I;
3: for n = 1, 2, . . . , L do
4: Update {gn

k} based on gn
k = Pn−1

k x̃n−1
eq,k ;

5: Update {vn
k} based on vn

k =
gn
k

βk+(gn
k
)H x̃n

eq,k
;

6: Update {Pn
k} based on Pn

k = β−1
k (Pn−1

k − vn
k (g

n
k )

H);
7: Calculate residual en

k = ỹn
k − (Wn−1

k )H x̃n
eq,k;

8: Update the estimated matrix Wn
k = Wn−1

k + vn
k (e

n
k )

H ;
9: n = n+ 1;

10: end for

the digital beamformers {FBB ,WBB}. The loss function is
the system sum rate, which is denoted as L({ΥC ,ΥB};H),
where ΥB consists of Ψ and Ω, which represent the trainable
parameters of the analog NN and digital NN, respectively, and
ΥC represents the trainable parameteres of the CEDUN.

2) The Data Transmission Stage: We first train the deep-
unfolding NN as mentioned above. Then in data transmission,
we fix the analog beamfomers and the pilots during the channel
statistics coherence time and estimate the low-dimensional
equivalent real-time CSI by the CEDUN to update the digital
beamformers. The analog beamformers obtained by the offline
training can well adapt to CSI statistics when it does not
change [8]. When it changes, we need to obtain several full
CSI samples and employ transfer learning [13] to fine tune
the parameters of the deep-unfolding NN, where the analog
beamformers are updated for tracking the changes of CSI
statistics.

B. Deep-Unfolding NN for Channel Estimation

1) The RLS Channel Estimation Algorithm: The procedure
of the RLS channel estimation algorithm is presented in
Algorithm 1, where x̃n

eq,k and ỹn
eq,k are the n-th column of

X̃eq,k and Ỹeq,k, respectively. Note that gn
k ,v

n
k , and Pn

k are
intermediate variables, βk ∈ (0, 1) is the forgetting factor and
δ denotes a small positive number, Wn

k denotes the weight

matrix and the estimated channel Ĥeq,k = (Wn
k )

H . Moreover,
the estimation error enk descends with the update of Wn

k . The
number of iterations is the length of pilots L. In addition, the
inputs of the algorithm are the pilots and received signal, and
the output is the estimated channel matrix.

2) Deep-Unfolding NN for Channel Estimation: Based on
the RLS algorithm, we propose the CEDUN which contains
the pilot training NN and RLS induced deep-unfolding NN.
The structure of the CEDUN for user k is shown in Fig. 2.

In the pilot training NN, we set the pilots as trainable
parameters. As shown in Fig. 2, to model the process of
pilot training for estimating the low-dimensional equivalent
CSI matrix Heq,k, the input and output of the NN are Heq,k

and Ỹeq,k, respectively, and X̃eq,k is set as the trainable

parameter. Note that X̃eq,k needs to be scaled to satisfy the
power constraint (8c).

For the RLS induced deep-unfolding NN, we unfold
the RLS algorithm into a network with significantly less
layers. The inputs of the n-th layer of the NN are
{x̃n

eq,k, ỹ
n
eq,k,P

n−1
k ,Wn−1

k } and the outputs are {Pn
k ,W

n
k}.

To increase the degrees of freedom for the parameters and
speed up the convergence, we employ the structure Yn

out =
Tn

yX
n
in + qn

y in the n-th layer of the NN, where Xn
in and

Yn
out represent the input and output, Tn

y and qn
y are the

defined introduced multiplier and offset trainable parameters
of the n-th layer, respectively. The structure is inspired by the
neurons of conventional DNNs, e.g., y = Wx+b, where the
multiplier trainable parameter Tn

y corresponds to the weight
matrix W and offset trainable parameter qn

y corresponds to the

bias vector b. Note that �n
C � {Tn

g,k,q
n
g,k} ∪ {Tn

v,k,q
n
v,k} ∪

{Tn
p,k,q

n
p,k} ∪ {Tn

w,k,q
n
w,k} are the multiplier and offset

trainable parameters to update the variables gn
k , vn

k , Pn
k , and

Wn
k in the n-th layer, respectively. As shown in Fig. 2, Gn

k ,
Vn
k , Un

k , Wn
k represent the sub-layers of the n-th layer of the

deep-unfolding NN, i.e., (9a)-(9d). The forgetting factor βn
k is

also set as trainable parameter γn
k :

gn
k = Tn

g,k(P
n−1
k x̃n

eq,k) + qn
g,k, (9a)

vn
k = Tn

v,k(
gn
k

γn
k + (gn

k )
H x̃n

eq,k

) + qn
v,k, (9b)

Pn
k = Tn

p,k(γ
n
k )

−1(Pn−1
k − vn

k (g
n
k )

H) + qn
p,k, (9c)

Wn
k = Tn

w,k(W
n−1
k + vn

k (e
n
k )

H) + qn
w,k. (9d)

Thus, the trainable parameters of the CEDUN can be denoted

as ΥC � X̃eq,k ∪ {⋃Lc

n=1 �
n
C ∪ γn

k }, where Lc is the number
of layers of the RLS induced deep-unfolding NN.

C. Deep-Unfolding NN for Hybrid Beamforming
1) The SSCA-based Hybrid Beamforming Algorithm: For

the hybrid beamforming design, we first introduce the mixed-
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timescale SSCA framework [8]. We optimize the analog
beamformers based on the full CSI samples H. The digital
beamformers are fixed and we update the analog beamformers
by employing a convex surrogate function to replace the
objective function and taking its derivative [8]. By fixing the
analog beamformers, we optimize the digital beamformers
based on the low-dimensional equivalent CSI matrix Heq . We
adopt the successive convex approximation (SCA) algorithm
to optimize the short-term digital beamformers [14].

Wi
BB,k = Ti

w,k

(
(

K∑
v=1

Heq,kF
i−1
BB,vF

i−1H
BB,vH

H
eq,k + σ2

kI)
−1

Heq,kF
i−1
BB,k

)
+Qi

w,k, (10a)

λi
k,l = Ti

λ,k(μ
i
kα

tik,l) + qi
λ,k, (10b)

f iBB,k,l=T
i
f,k

(
λi
k,l((C

i
k)

+Bi
f,k+(D

i
f,k)

−)HH
eq,kw

i
BB,k,l

)
+qi

f,k,

(10c)

tik,l = Ti
t,k(t

i−1
k,l + μi

k(1− εk,lα
ti−1
k,l )) + qi

t,k. (10d)

2) The SSCA Algorithm Induced Deep-Unfolding NN: We
unfold the SSCA algorithm leading to HBDUN. The structure
of HBDUN is shown in Fig. 2, which consists of the analog
NN and the digital NN.

The input of the analog NN is the full channel samples
H and the outputs are the analog beamforming matrices
{FRF,k,WRF,k}. We set the angle of the phase shifters for

analog beamformers as trainable parameters Ψ � {ΨF ,ΨW }
of the analog NN and employ the operation ej(·) to satisfy the
unit modulus constraint.

The input of the digital NN is the low-dimensional real-time
equivalent CSI matrix Heq,k and the outputs are the digital
beamforming matrix {FBB,k,WBB,k}. We next introduce
the detailed structure of the digital NN, which unfolds the
SCA algorithm into a layer-wise structure. Two non-linear
operations are defined for approximating matrix inversion.
First, we take the inverse of the diagonal entries of matrix
A and set the other elements as zero and denote the result as
A+. Next, we set the imaginary part of the diagonal elements
of D to zero, expressed as D−. Based on this, we employ the
following structure to approximate the matrix inversion.

• Firstly, we use A+B with the non-linear operation A+

and trainable parameter B, where B is introduced to
improve performance.

• Next, we introduce the offset trainable matrix D to better
approximate the inverse matrix. In addition, we find that
the imaginary part of the diagonal elements of the inverse
matrix is close to zero so we apply D−.

Thus, the matrix inversion A−1 is approximated by employ-
ing A+B+D−. Note that we introduce trainable parameters
{Bi

f,k,D
i
f,k} to approximate the inversion of variable f iBB,k,l

in the i-th layer, which reduces the computational complexity.
To increase the degrees of freedom for the parameters, the mul-
tiplier and offset trainable parameters �i

B � {Ti
w,k,Q

i
w,k} ∪

{Ti
λ,k,q

i
λ,k} ∪ {Ti

f,k,q
i
f,k} ∪ {Ti

t,k,q
i
t,k} are introduced in

updating the variables Wi
BB,k, λi

k,l, f
i
BB,k,l, and tik,l in the i-

th layer, respectively. As shown in Fig. 2, Wi
k, Di

k, Ci
k, and T i

k
represent the sub-layers of the i-th layer of the deep-unfolding
NN, i.e., (10a)-(10d), where

Ci
k�

(K,Ns)∑
(m,n)

λi
m,nH

H
eq,mw

i
BB,m,n(w

i
BB,m,n)

HHeq,m+v
i
kI. (11)

The constant 1
logα is set as trainable parameter μi

k to speed
up convergence. Thus, the trainable parameters of the digital

NN are Ω �
⋃Lh

i=1{Bi
f,k,D

i
f,k} ∪�i

B ∪ μi
k, where Lh is the

number of layers. All the trainable parameters of the HBDUN
are denoted as ΥB � Ψ∪Ω. To avoid gradient explosion and
satisfy the power constraint, we normalize Fi

BB,k by Ns at

each layer to
√
Ns

‖FRF,kFi
BB,k‖F

Fi
BB,k.

IV. SIMULATION RESULTS

In this section, we verify the effectiveness of the proposed
deep-unfolding algorithm based on simulation results.

A. Simulation Setup
The simulation setting is given as follows. We set Nt = 64,

NRF
t = 16, Nr = 32, NRF

r = 4, K = 4, and Ns = 4. We set
the signal-to-noise ratio (SNR) as 10 dB and the number of the
layers for CEDUN and HBDUN are 16 and 5, respectively. We
employ the 3GPP TR 38.901 channel model [15] to generate
the channel data.

We provide the following benchmarks as comparison:

• Joint design NN: The proposed mixed-timescale deep-
unfolding NN which jointly trains the CEDUN and
HBDUN.

• Separate Design NN: The proposed mixed-timescale
deep-unfolding NN which separately trains the CEDUN
and HBDUN with the minimization of MSE and the max-
imization of sum rate as the loss function, respectively.

• HBDUN: The proposed deep-unfolding NN for the de-
sign of hybrid beamforming with perfect CSI.

• RLS-SSCA: The cascaded RLS algorithm for the design
of channel estimation and the SSCA algorithm for the
hybrid beamforming design.

• RLS-ZF: The cascaded RLS algorithm for the design of
channel estimation and the zero-forcing (ZF) algorithm
for the hybrid beamforming design.

B. System Sum Rate
Fig. 3 illustrates the sum rate of the proposed network and

the benchmarks for different values of SNR. It can be seen that
the proposed separate deep-unfolding NN achieves comparable
performance to the conventional SSCA and RLS algorithms,
which indicates the effectiveness of our deep-unfolding NN.
The results also illustrate the superiority of the joint design
compared to separate design NN.

Table I manifests the sum rate versus the number of users K.
We normalize the sum rate of NNs by the corresponding value
of the RLS-SSCA algorithm. We can see that when K is small,
e.g., K = 2, the proposed separate design NN can achieve
97.23% performance of the conventional iterative algorithms
and the joint design NN outperforms the conventional iterative
algorithms. It can be seen that the sum rate of deep-unfolding
NN degrades with the increase of K. It is mainly because as
K increases, the problem turns more complex and it is difficult
for NNs to find a satisfactory solution.

Table II and Table III indicate the sum rate versus the
number of layers/iterations for deep-unfolding NN and con-
ventional iterative algorithms. We normalize the results by the
sum rate which is achieved by the conventional algorithm with
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TABLE I: The sum rate versus different numbers of K.

K 1 2 3 4 5 6
RLS-SSCA (bits/s/Hz) 10.18 19.55 24.78 29.64 35.84 42.63
Separate Design NN 98.33% 97.23% 97.06% 96.77% 95.60% 95.33%

Joint Design NN 103.53% 102.32% 100.31% 100.07% 99.49% 98.78%

TABLE II: The sum rate versus the number of HBDUN/SSCA layers/iterations.

The number of layers of HBDUN 3 4 5 6 7 8 9
sum rate 85.14% 92.65% 101.25% 101.79% 101.79% 100.86% 101.02%

The number of layers of SSCA 30 35 40 45 50 55 60
sum rate 84.84% 89.44% 92.43% 96.99% 98.86% 100% 100%

TABLE III: The sum rate versus the number of CEDUN/RLS layers/iterations.

The number of layers of CEDUN 8 10 12 14 16 18 20
sum rate 92.18% 95.44% 98.15% 99.09% 101.25% 101.46% 101.5%

The number of layers of RLS 40 50 60 70 80 90 100
sum rate 79.64% 86.69% 91.85% 95.47% 100% 100% 100%
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Fig. 3: The sum rate versus the SNR.

90 layers of the RLS algorithm and 70 layers of the SSCA
algorithm. We see that the deep-unfolding NNs achieve better
performance than the conventional algorithms with fewer
layers, which illustrates that the computational complexity of
the deep-unfolding NN is lower than that of conventional
algorithms. With more layers, the sum rate achieved by the
joint deep-unfolding NN improves and then fluctuates. This
is mainly because when there are few layers, the degrees of
freedom limit the learning capability. Thus, the sum rate im-
proves with the number of layers. When the number of layers
is large, the numerical error caused by matrix multiplication
and inversion becomes large. Note that the number of layers
of the CEDUN is the length of the pilots. Thus, our proposed
deep-unfolding NN can save pilot resources compared to the
RLS algorithm.

V. CONCLUSION

In this work, a mixed-timescale deep-unfolding based
JCEHB framework has been proposed for hybrid massive
MIMO systems. We developed a RLS algorithm induced
deep-unfolding NN and a SSCA algorithm induced deep-
unfolding NN for channel estimation and hybrid beamforming,
respectively. Specifically, we introduced trainable parameters
and non-linear operations to replace the high complexity
operations and increase convergence speed. Simulation results
showed that the proposed deep-unfolding algorithm can out-
perform conventional iterative algorithms. For future study, it
is worth generating our deep-unfolding framework to solve

more complex wireless systems around the research hotspots,
such as multicell MIMO, drones and intelligent reflecting
surface systems.
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