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Fraunhofer Heinrich Hertz Institute

Berlin, Germany
daniel.schaeufele@hhi.fraunhofer.de

Guillermo Marcus
NVIDIA

Berlin, Germany
gmarcus@nvidia.com

Nikolaus Binder
NVIDIA

Berlin, Germany
nbinder@nvidia.com

Matthias Mehlhose
Fraunhofer Heinrich Hertz Institute

Berlin, Germany
matthias.mehlhose@hhi.fraunhofer.de

Alexander Keller
NVIDIA

Berlin, Germany
akeller@nvidia.com

Sławomir Stańczak
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Abstract—Non-orthogonal multiple access (NOMA) is an inter-
esting technology that enables massive connectivity as required
in future 5G and 6G networks. While purely linear processing
already achieves good performance in NOMA systems, in certain
scenarios, non-linear processing is mandatory to ensure accept-
able performance.

In this paper, we propose a neural network architecture that
combines the advantages of both linear and non-linear processing.
Its real-time detection performance is demonstrated by a highly
efficient implementation on a graphics processing unit (GPU).
Using real measurements in a laboratory environment, we show
the superiority of our approach over conventional methods.

Index Terms—machine learning, neural networks, wireless
communication, multi-user detection, NOMA, MIMO, massively
parallel architectures, GPU, CUDA

I. INTRODUCTION

In future 5G and 6G mobile networks, the demand for
massive connectivity will not be satisfiable with traditional
orthogonal multiple access (OMA) systems. This is especially
the case in massive machine-type communication (mMTC)
scenarios, e.g., in campus networks. For this reason a large
body of research has been devoted to non-orthogonal multiple
access (NOMA) systems [1]–[4]. In order to deal with multi-
user interference in such systems, non-linear detection has
been proposed (for example, see [5]–[7]).

While non-linear detectors can perform significantly better
than linear detectors in scenarios with strong multi-user inter-
ference, they can be very sensitive to even small changes in
a wireless environment (e.g., due to multi-path scattering and
intermittent interference in mMTC scenarios). Therefore, the
performance of non-linear detectors can degrade in dynamic
environments. Theoretical studies [8] have shown that in mas-
sive multiple-input multiple-output (MIMO) systems linear de-
tectors can achieve the spectral efficiency comparable to non-
linear methods. For this reason, purely non-linear detectors
may be inefficient in massive MIMO NOMA systems.

This work has been partially funded by the German Federal Ministry of
Education and Research (BMBF, Germany) in the project Open Testbed Berlin
- 5G and Beyond (OTB-5G+) under Grant 16KIS0980.

Contrary to our previous work which focused on using
the adaptive projected subgradient method (APSM) [9], we
propose a neural network (NN) architecture, which combines
a linear and a non-linear branch. Additionally, we propose to
use the linear least squares (LLS) algorithm to initialize the
weights of the linear branch and to exploit symmetry in the
IQ samples to improve the performance over a conventional
NN. We then present a graphics processing unit (GPU)-based
implementation, which is able to achieve very short execution
times. In addition, we evaluate the performance on a real data
set that has been acquired in a lab environment.

The remainder of this paper is organized as follows. In
Section II we give a formal problem statement as well as a
presentation of our proposed NN architecture and several tricks
we used to increase the performance. In Sections III and IV
we present the real-time implementation and the laboratory
setup, which led to the results discussed in Section V.

II. BACKGROUND

In this section we first give an overview of the system
model and define the problem we intend to solve. Then we
present our NN architecture and several tricks to improve its
performance.

A. Preliminaries

In the following, scalars, column vectors and matrices are
denoted by italic lower case letters x, bold lower case letters x
and bold upper case letters X, respectively. Matrix transposes
and inverses are denoted by XT and X−1, respectively. The
set of natural numbers, real numbers and complex numbers
are denoted by N, R and C, respectively, while the real and
imaginary parts of a complex number c ∈ C are denoted by
ℜ(c) and ℑ(c), respectively. We define the range N1, N2 :=
{N1, N1 + 1, . . . , N2} ⊂ N, where N1 ≤ N2.
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Fig. 1. Proposed structure of NN with N hidden layers.

B. System Model

We assume a multi-user uplink system with K users and M
receive antennas and a non-dispersive channel. The received
signal r(t) ∈ CM at the time t ∈ N is given by

r(t) =

K∑
k=1

√
pk · bk(t) · hk + n(t), (1)

where pk ∈ R is the transmit power of user k ∈ 1,K,
bk(t) ∈ C is its information-bearing symbol, while the vectors
hk ∈ CM and n(t) ∈ CM stand for the channel signature
of user k and additive noise, respectively. Note that we do
not assume any distribution of the noise and structure of the
receive antenna array. The objective of multi-user detection
considered in this study is to design a filter gk : CM → C for
a selected user k, such that (∀t ∈ N)

∣∣gk(r(t))− bk(t)
∣∣ ≤ ϵ,

where ϵ > 0 is a small predefined noise tolerance.
The receive process is split into two phases. In the

first (training) phase all transmitters transmit a series of
NT uniformly distributed pseudo-random symbols, which
are known by the receiver. The transmitted symbols
for user k are then collected into a vector yT,k =

[bT,k(1), bT,k(2), . . . , bT,k(NT)]
T ∈ CNT . The correspond-

ing receive signal is also collected into a matrix XT =
[r(1), r(2), . . . , r(NT)]

T ∈ CNT×M . This training data can
then be utilized to train the detection filter.

During the following detection phase a series of
ND data symbols is transmitted by each transmitter,
which is to be reconstructed at the receiver. Again,
we collect the receive signal into a matrix XD =
[r(NT + 1), r(NT + 2), . . . , r(NT +ND)]

T ∈ CND×M and
use this matrix as input for the detection algorithm.

C. Exploiting the Symmetry of IQ Samples

According to the argument given in [10], we can use the
equivalence

g(r(t)) = f(r1(t)) + if(r2(t)) (2)

for linear functions f : R2M → R and g : CM →
C, where r1(t) =

[
ℜ(r(t))T,ℑ(r(t))T

]T ∈ R2M and
r2(t) =

[
ℑ(r(t))T,−ℜ(r(t))T

]T ∈ R2M . Applying this
transformation to the training input matrix XT yields a
new matrix X̄T = [r1(1), r2(1), . . . , r1(NT), r2(NT)]

T ∈
R2NT×2M and a new training target vector ȳT,k =

[ℜ(bk(1)),ℑ(bk(1)), . . . ,ℜ(bk(NT)),ℑ(bk(NT))]
T ∈ R2NT .

The same transformation can be applied to the detection input
matrix XD to obtain X̄D ∈ R2ND×2M and ȳD,k ∈ R2ND .

By using this approach, we can use twice as many training
samples to train f . At the same time we enforce that both
real and imaginary parts are predicted using the same function
(with different inputs), which decreases the degrees of freedom
of the learned function (compared to using two independent
functions). This will speed up the training process given that
the constraint is satisfied by the input data.

We later show experimentally that this approach is also
beneficial in the case of non-linear NNs, although there is
no strong theoretical background for this, yet.

D. Neural Network Structure
In many cases a purely linear estimator can already achieve

good performance. However, in certain scenarios, non-linear
processing (which we will provide with NNs) is necessary
to achieve good performance. In order to combine both
approaches, we propose to use the architecture shown in
Figure 1. The linear (bottom) branch provides a dense layer
without any activation functions, while the top branch contains
N hidden, dense layers with Ln neurons each and rectified
linear unit (ReLU) activation functions, where n ∈ 1, N ,
followed by a final dense layer without non-linearity. Both
branches are summed element-wise to produce the final out-
put. This approach resembles a single residual unit in deep
residual networks (ResNets) [11]. However, in the proposed
architecture, the skip connection contains a matrix multipli-
cation, whose weights we efficiently initialize in a manner
outlined in the next section. Due to this initialization, explicit
orthogonalization of both branches is unnecessary, as the non-
linear branch refines the output of the linear estimator.

E. LLS Initialization of Linear Weights
The optimal solution (under certain assumptions) for a linear

estimator can be computed using the LLS algorithm [12, p.
83], where the weights for user k are computed as

wk = (X̄T
TX̄T)

−1X̄T
TȳT,k. (3)

We can then compute the solution by a matrix-vector
multiplication as ŷD,k = X̄Dw

k. By using the weights wk for
the weight vector w0 in the linear branch of the NN presented
in Section II-D, we can incorporate the LLS solution into
our NN. This approach is beneficial to reduce training time
as the training of the NN by traditional stochastic gradient
descent (SGD) methods already has a good starting point. The
number of computations needed for training is further reduced
by fixing the weights of the linear branch and thus avoiding
the need for weight updates, resulting in a key performance
improvement.
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Under certain conditions, we can achieve better performance
with minimum mean square error (MMSE) estimation [13], but
we deem the added computational effort to be unnecessary, as
the estimator will be further refined during the training of the
neural network.

III. REAL-TIME IMPLEMENTATION

In order to achieve real-time performance for our proposed
NN structure we propose to use an optimized implementation
running on a GPU. For the purpose of this work we consider
the fully fused implementation that was used in [14]. This
implementation is heavily optimized to save all weights of
the networks into the extremely fast registers and to save all
intermediate results into shared memory, thus avoiding the
need to access the relatively slow global memory. Additionally,
the full network is fused into a single kernel, which avoids the
need to copy intermediate results to global memory. However,
due to the limited amount of registers and shared memory,
this approach only works for up to 128 neurons per layer. To
show results for layers with a larger number of neurons, we
switch to an implementation that applies the general matrix
multiplication (GEMM) routines provided by the CUTLASS
template library when necessary.

In order to optimize the computation of the LLS solution
we used the cublasSgelsBatched algorithm provided by
the cuBLAS library.

IV. EXPERIMENTAL SETUP

This section describes the hardware components and trans-
mission signals of our real-time multi-user detection setup.

A. Hardware Components

The transmitter, receiver, and signal processing equipment
are shown in Figure 2. All components are commercial off-
the-shelf (COTS) devices.

The server, that was used for signal processing and the data
transfer from and to the Software-Defined Radios (SDRs) is
equipped with an Intel Xeon W-3245 central processing unit
(CPU) and an RTX 2080 Ti consumer GPU.

The SDR equipment is composed of four Ettus USRP N310
SDRs. Furthermore, we use a single National Instruments (NI)
OctoClock for a global positioning system (GPS) disciplined
clock and timing source for our SDRs. With this setup, all
four SDRs, each equipped with four ports on the transmitter
(Tx) and receiver (Rx) path, behave like a single SDR system
with sixteen synchronized physical antenna ports for both the
Rx and Tx paths.

The 16 physical Rx antennas are arranged as a uniform
circular array (UCA) with a radius of 6.5 cm. Uniform spacing
is ensured by a ring retainer around the antennas. The antennas
operate in the 2.4 GHz band with an omnidirectional radiation
pattern and vertical polarisation.

For the transmitting users a single NAMC SDR module [15]
is used, which is also synchronized to the OctoClock. Attached
to this SDR module are six antennas, each of which represents
a single transmitting user. Each user antenna is installed on a
tripod, allowing for conveniently adjusting location and height,

Fig. 2. System setup. The antennas in the front are used as transmitters, the
receiver consists of one the circular antenna array in the background (only
one is used for theses experiments), the Ettus SDRs below it and the server
to the left of it.

relative to the receiving antenna array. According to the data
sheet, the antenna gain is 5 dBi at 2.5 GHz and the antenna
polarization is vertical.

B. Transmission signal

For data transmission we use Single-Carrier Modulation
(SCM). Similar to the NOMA setup in [16] each of the
six users is equipped with a single transmit antenna, and all
users are perfectly synchronized because we use a single SDR
module for all users.

The pseudo-random signal of each user is first quadrature
amplitude modulation (QAM) modulated and then up-sampled
by a factor of 16 and pulse shaped by a root-raised-cosine
(RRC) filter to reduce the signal bandwidth to a total of
1.92 MHz and fit the system sampling rate of 30.72 MHz.

To allow for cross-correlation-based synchronization on the
receiver side, a Frank-Zadoff-Chu sequence is added to the
signal of each user.

At the receiver, we use the same RRC filter parameters in
combination with the corresponding downsampling factor of
16 to recover the modulated signals.

In each transmission a total of 685 complex training sym-
bols and 3840 complex data symbols are transmitted per user.

V. RESULTS

In this section, we first demonstrate the performance of our
proposed algorithm for different network dimensions. Then
we evaluate the effectiveness of the measures proposed in
Section II and finally we investigate the performance in the
presence of noise.

In the following, each data point is an average of 50 trans-
missions, each consisting of 685 complex training symbols
and 3840 complex data symbols modulated with quadrature
phase-shift keying (QPSK). We only used the receive signal
of 4 of the 16 antennas in our system. The reason is, that
in a system where the number of users is smaller than the
number of antennas, we can compute an optimal solution using
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TABLE I
AVERAGE EXECUTION TIMES OF DIFFERENT ALGORITHMS.

Algorithm Training Time Detection Time

LLS 238.7 µs 13.4 µs
Fully-fused NN 20.4 ms 32.7 µs
Tensorflow NN 1.06 s 209.1 ms

a linear system, because the system is over-determined. Since
the maximum number of users is limited by our available lab
equipment, we instead limit the number of receiver antennas
to 4 to assess a under-determined system.

The 6 users are consecutively numbered and each user has
3 dB less transmit power than the previous user. For example,
the fourth user has 9 dB less transmit power than the strongest
(i.e., first) user. By distributing the transmit power in this
manner we can run simulations for users with a very low
signal-to-interference-plus-noise ratio (SINR).

In addition to the (uncoded) bit error ratio (BER), we also
give numbers for coded bit error ratio (CBER) which was
measured after applying a low-density parity-check (LDPC)
code with a block length of 7680 and a code rate of 0.7
(implemented in the Sionna library [17]). The demapping was
performed using the a posteriori probability (APP) algorithm,
which used the ground-truth signal-to-noise ratio (SNR) of the
decoded user symbols as input.

The timings given in this section do not account for the
copying of the data to and from the GPU. In a practical system
the previous processing steps would also be performed on the
GPU, so that the data would already reside on the GPU and
no copying would be necessary.

By using manual parameter sweeps, we managed to achieve
good training performance by employing the Adam optimizer
[18] with a learning rate of 0.005, a training duration of 50
epochs and a batch size of 128. The relatively large batch size
is influenced by the fact that the GPU cannot be fully loaded
for smaller batch sizes, which would decrease the throughput.
We tried to optimize the mean squared error (MSE) loss.

When choosing the optimal network dimensions, both de-
tection performance in terms of achievable BER and execution
time need to be taken into account. The simulation results for
different network dimensions are given in Figure 3. A network
with 3 hidden layers with 64 nodes each seems to provide a
very good trade-off, as this achieves the lowest BER and still
has a very short training time. Numerical values for training
and detection times are given in Table I. We note that unlike
for successive interference cancellation (SIC), where users are
decoded sequentially [13], all users can be decoded in parallel
and the execution time for our algorithm does not depend on
the user that is to be decoded. The execution times given for
Tensorflow were measured in graph mode on the same GPU,
but are not directly comparable, as they include additional
overhead for Python wrappers and data copying.

In Figure 4, we evaluate the performance gain that can
be achieved by exploiting the symmetry of the IQ samples
as proposed in Section II-C. For comparison, we also show
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Fig. 3. Average BER over training time for different network dimensions.
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symmetry. Error bars show the ±1SD confidence interval.

the performance of the model, when being trained with only
half the data set, so that the number of training samples
is identical to training without this scheme. For the LLS
algorithm, the performance gain is negligible as the number
of training samples is sufficient to achieve close to optimal
performance for all schemes. For the NN algorithm however,
there is a big performance gain, which clearly demonstrates
the benefits of this approach. The fact that the simulations with
half the data set also show significantly improved performance
compared to the original simulation, clearly demonstrates that
the equivalence (2) also holds for non-linear functions similar
to our NN and that the imposed constraints improve the
performance of the network. Additionally, the data shows that
adding the linear part significantly improves the performance
compared to a conventional NN structure with only a series
of dense layers and activations.

In Figure 5, we examine the performance for different noise
levels. To mimic the different noise levels we add artificial
additive white Gaussian noise (AWGN) to our recorded sam-
ples. The SNR is defined here as the ratio of the power of the
received signal (for all users and on all antennas) compared the
power of the added noise. For each data point the simulation
was run with 400 different noise realisations, giving a total of
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20 000 simulation runs per data point. The SNR of our physical
system was measured to be 40 dB, which can be ignored for
this experiment, as the artificially added noise is significantly
stronger than the noise acquired by our measurement system.
We note that the power of the signal of interest (SOI) (i.e.,
the received power of the fourth user, which we examine here)
has a power of −12 dB relative to the received power of all
users, so the SNRs for our SOI are actually 12 dB lower.

For SNRs above 5 dB the NN outperforms the LLS algo-
rithm. The CBER of the NN drops towards an error floor
about 5 dB earlier than LLS. In the high-SNR regime the NN
algorithm achieves almost an order of magnitude less uncoded
BER, and also a significantly lower CBER. The error floor of
both algorithms is most likely due to residual interference,
which can occur due to non-linearities in the radio receiver
or algorithms that are not powerful enough to remove all
interference (possibly due to an insufficient number of training
samples).

A. Open Challenges

We empirically observed that in the low-SNR regime, the
NN tends to overfit for some training cases. As a result, the
learned NN can not properly remove the multi-user inter-
ference. This can have an impact on the demapper, leading
to a very asymmetric distribution of log likelihood ratios
(LLRs), which in turn will severely degrade the performance
of the LDPC decoder. In these rare cases, the proposed NN
can have a significantly higher CBER, while still having a
lower BER than that of the LLS algorithm. We would like
to emphasize that this challenge is mainly driven by the fact
that the training must be done with a relatively small number
of samples. However, it remains an open challenge to either
find a more robust NN architecture or training techniques to
reduce the impact of overfitting while maintaining the average
performance.

VI. CONCLUSION

We proposed to use NNs for NOMA. By adding a linear
part with LLS initialization and by exploiting the symmetry in

the IQ samples, our proposed NN structure allows for multi-
user detection with very small error despite its relatively small
dimensions. By utilizing an optimized, fully-fused GPU imple-
mentation we achieve execution times that are several orders of
magnitude smaller than those of a Tensorflow implementation
and also small enough to perform the detection in the 1 ms
time-frame of typical ultra-low latency (ULL) systems. Having
shown the feasibility of ULL detection, in future research, we
will address the training time, e.g., by tracking the channel
and thus amortizing the training time across frames.
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[9] M. Mehlhose, D. Schäufele, D. A. Awan, G. Marcus, N. Binder, M. Kas-
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