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Abstract—Network link prediction has attracted increasing
attention due to its capability of extracting missing informa-
tion, and evaluating network-evolving mechanisms. Despite the
increasing popularity, fairness is widely under-explored in the
area. Motivated by this, this study proposes novel fairness-aware
graph augmentation designs to mitigate the bias in graph data
while creating node representations. Different fairness notions
on graphs are introduced to guide the designs of the adaptive
structural and attributive augmentation schemes. Experimental
results on real-world networks demonstrate that the introduced
augmentation frameworks can improve group fairness measures
for link prediction while providing comparable utility to state-of-
the-art contrastive learning algorithms.

Index Terms—dynamic graphs, link prediction, fairness

I. INTRODUCTION

Graphs are effective mathematical tools to represent and
analyze diverse complex systems, e.g., biological networks [1],
or financial markets [2]. This motivates the recent attention
towards learning over graphs. Specifically, dynamic graphs
are essential for modeling time-varying networks, which
inspires various framework designs for them, see e.g., [3]–
[6]. While dynamic graphs present certain challenges, graph
neural networks (GNNs) have shown to be effective in learning
complex relations within them for link prediction [7], node
classification [8], source localization [9], and anomaly detection
[10].

Link prediction is a task where the probability of the
existence of a link between two nodes is estimated based
on the input graph. Link prediction algorithms are capable
of extracting missing information in networks and managing
network-evolving mechanisms. A possible real-world applica-
tion of such algorithms can be the recommender systems in
social networks [11], [12], where the social circles of users
are aimed to be enlarged via interesting suggestions for them.
Therefore, the link prediction task is inherently related to the
dynamic networks, where it can designate the evolution of
networks, as well as be utilized to improve the learning models
for them.

It has been shown that machine learning algorithms can
give rise to discriminative results for certain underrepresented
groups, as they propagate the bias within historical data on
which they are trained [13]. Specifically, [14] demonstrates
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that the utilization of graph structure in learning can further
amplify bias. For example, nodes in social networks connect
to other nodes with similar attributes with higher probabilities,
which results in denser connectivity between the nodes with
the same sensitive attributes (e.g., gender, race) [15]. Thus,
the node representations created by GNNs can be highly
correlated with the sensitive attributes, as the representations
are generated by aggregating information from the neighbors.
Such a correlation occurs even when the sensitive attributes are
not directly used in training [16]. Furthermore, specific to link
prediction methods, bias can be reinforced over time due to the
amplified segregation and narrowed diversity of objects, which
is called filter bubble problem [17]. Amplified segregation is
the result of promoted links between similar users (generally
with similar sensitive attributes) based on the suggestions of
the link prediction algorithm. For example, [18] demonstrates
that there is a higher ethnic segregation in the relationships of
Facebook users with more opportunities to meet similar others.
Hence, the consideration of fairness is essential not to amplify
the bias over time for link prediction algorithms.

While fairness-related literature is rich within the context
of general machine learning, the field is rather under-explored
for graphs. Adversarial regularization is a common strategy
to mitigate the effects of sensitive attributes in the machine
learning algorithms, which is also employed in fairness-aware
link prediction studies [19], [20]. Furthermore, [21], [22]
modify adjacency matrix to enhance different fairness measures
specifically for link prediction, while [23] designs a regularizer
for the same purpose. Fairness-aware pre-processing tools over
graphs [24] can also be utilized to mitigate the bias in link
prediction as the ensuing task. In this study, we present fairness-
aware graph data augmentation strategies to reduce the bias
within the graph structure and nodal features. Similar to the
majority of the works mentioned above, the proposed schemes
can be employed within the learning process as in-processing
fairness tools. Additionally, our proposed strategies can be
utilized as pre-processing tools on the input graph, which
implies their applicability to different GNN-based learning
frameworks in a versatile manner.

Contrastive learning methods maximize the agreement of
representations that capture the dependencies of interest while
creating embeddings in an unsupervised framework [25]. These
methods have been shown to achieve the state-of-the-art results
in various learning tasks over graphs such as node classification,
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regression, and link prediction [26]–[31]. In this work, the
efficacy of the proposed augmentation for link prediction
is evaluated within the framework of contrastive learning.
Specifically, the learning framework of a graph contrastive
learning study [29] is modified, where the fairness-unaware
augmentation schemes utilized in [29] are replaced by adaptive
fairness-aware strategies proposed in this work. Note that our
previous work, [32], employs a similar learning framework
specifically for node classification. Fairness-aware graph data
augmentation is also utilized in [33] in order to create stable
and fair representations. However, the augmentation introduced
in [33] is not adaptive to the graph structure and designed
primarily for counterfactual fairness. Furthermore, a biased
edge dropout scheme is proposed in [34] to enhance fairness,
that is said, the scheme therein again is not adaptive to the
graph structure.

To sum up, this study introduces adaptive fairness-aware
graph data augmentation strategies that can mitigate bias for
link prediction. Overall our contributions can be summarized
as follows:
c1) Based on graph-related fairness notions, novel adaptive
augmentation strategies are introduced to mitigate potential bias.
Compared to existing augmentation frameworks, the increase
in the incurred computational complexity is negligible.
c2) Theoretical analysis is provided to demonstrate that
the proposed adaptive augmentation on nodal features can
effectively reduce intrinsic bias.
c3) Experimental results on real-world social networks demon-
strate that the proposed schemes improve fairness metrics while
providing comparable utility for link prediction compared to
the state-of-the-art contrastive learning-based methods.

II. FAIRNESS-AWARE GRAPH DATA AUGMENTATION

Graph topology augmentation is presented to improve the
overall utility of the considered task by preventing overfitting is-
sue in training [35]–[37]. Meanwhile, in the contrastive learning
domain, graph data augmentation corrupts the graph structure
and nodal features to create more robust representations to the
applied augmentation, thus enhance utility in the ensuing tasks
[26], [27], [29], [38]. Since the graph data presents unique
challenges sourced from the dependent data samples, the design
of augmentation for graphs is still a developing research area,
although the field is extensively studied for tabular data. Both
topological (e.g., edge/node deletion) and attributive (e.g., fea-
ture shuffling/masking) augmentation strategies are presented
for graph contrastive learning [27]–[29], [38]. However, the
presented corruption strategies so far are generally not adaptive
to the input graph structure, i.e. treat each of the nodes (node
deletion), edges (edge deletion), and features (feature masking)
the same without considering graph connectivity. Although
[38] and [28] introduce adaptive augmentation schemes, the
motivation of these studies is to improve utility without any
fairness consideration. This study proposes fairness-aware
augmentation schemes both on the nodal features and graph
topology to mitigate bias. Different from previous studies, the

proposed strategies in this study are adaptive to the sensitive
features of the nodes as well as the input graph structure.

A. Preliminaries

The focus of this study is the mitigation of bias in link
prediction by creating fairness-aware node representations for
a given graph G := (V, E) in an unsupervised setting, where
V := {v1, v2, · · · , vN} denotes the set of nodes and E ⊆ V×V
is the set of edges. Nodal features and graph adjacency matrices
of the input graph G are represented by X ∈ RN×F and
A ∈ {0, 1}N×N , respectively, where Aij = 1 if and only
if (vi, vj) ∈ E . A single, binary sensitive attribute for each
node is considered herein, which is denoted by S ∈ {0, 1}N×1.
Overall, the main purpose is to learn a mapping f : RN×N ×
RN×F ×RN×1 → RN×F

′

for the inputs X,A, and S in order
to generate F

′
dimensional (generally F ′ ≪ F ) unbiased

node representations H = f(A,X,S) ∈ RN×F
′

, which will
be employed in link prediction. The feature vector and the
sensitive attribute of node vi are denoted by xi ∈ RF and
si ∈ {0, 1}, respectively.

B. Fairness-aware Feature Masking

Even though feature masking is commonly utilized in the
graph contrastive learning domain [28], [29], [33], [38], none of
the previous masking schemes are fairness-aware. Motivated by
this, this subsection presents a novel, adaptive feature masking
strategy that creates corrupted nodal features X̃ based on X
to reduce intrinsic bias sourced from the nodal features.

It is shown in [16] that features that are correlated with
the sensitive attributes propagate bias, even if the sensitive
attributes are not directly used in the training. This finding
motivates this work to consider sample correlation coefficient
between the nodal features and sensitive attributes as a measure
for possible bias introduced by the features. Specifically, the
features that are highly correlated with the sensitive attributes
are masked with larger probabilities to reduce the intrinsic bias.
In the assignment of non-uniform feature masking probabilities,
p-values [39] for two different sample correlation coefficient
metrics are employed: the Pearson coefficient [40] and the
Spearman coefficient [39]. Note that p-values reflect the
likelihood of the uncorrelatedness of the data samples.

Overall, the adaptive feature mask m(f) ∈ {0, 1}F is
generated by drawing entries from a Bernoulli distribution
for each feature with probabilities

p
(f)
i = p

(c)
i (1− p(b)), i = 1, . . . , F, (1)

where p
(c)
i is the p-value for the sample correlation coefficient

between the ith feature and sensitive attributes S, and p(b) is a
hyperparameter determining the base masking probability. The
masked/augmented feature matrix follows as

X̃ = [m(f) ◦ x1; . . . ;m
(f) ◦ xN ]⊤, (2)

where [·; ·] corresponds to the concatenation operation, and ◦
is the Hadamard product.

To investigate the efficacy of the proposed masking scheme
in reducing correlation, the total sample correlation is defined

678



as ρ =
∑F

i=1 |ri|, where ri is the sample correlation coefficient
between xi and S. Therefore, ρ is a measure of correlation
between X and S, which is desired to be reduced. ρ becomes a
random variable together with the applied probabilistic masking
strategy such that:

ρ :=

F∑
i=1

Ri, with Ri =

{
|ri|, with prob. βi,

0, with prob. 1− βi,
(3)

where βi is the probability that the ith feature is not masked
in the proposed augmentation. The following proposition
showcases the superior strength of the proposed adaptive
strategy over uniform feature masking in terms of reducing the
expected value of ρ, the proof of which can be found in [32].

Proposition 1. In expectation, the adaptive feature masking
scheme presented in this study results in lower total sample
correlation between the nodal features X and the sensitive
attribute S compared to uniform feature masking, that is

Ep(f) [ρ] ≤ Eq[ρ] (4)

where p(f) = [p
(f)
1 , · · · p(f)F ] with p

(f)
i = p

(c)
i (1 − p(b))

corresponding to the proposed method and q = [q1, · · · qF ] with
qi =

1
F

∑F
j=1 p

(f)
j represents the uniform masking scheme.

As ρ is a measure for the correlation, Proposition 1 implies
the superior effectiveness of our approach in the reduction
of intrinsic bias compared with the uniform feature masking
scheme.

C. Fairness-aware Edge Deletion

Edge deletion is a graph topology augmentation, where a
subset of edges are randomly deleted. While [14] demonstrates
that the graph structure can propagate and amplify bias, none of
the contrastive learning frameworks have considered a fairness-
aware edge deletion strategy so far [28], [29], [31], [33], [38].
Motivated by this, this study proposes a fairness-aware edge
deletion scheme that is adaptive to the input graph structure to
create augmented graph topology Ã based on A.

Due to the homophily principle, connections are tend to be
formed between similar nodes in graphs [15]. For example, in
social graphs, the number of edges between the nodes with
the same sensitive attributes is mostly larger than the number
of links between the nodes with different attributes (including
all data sets utilized in this paper). Such a connectivity pattern
results in the indirect utilization of sensitive attributes, as most
of the neighbors whose information is aggregated in GNN-
based learning have the same sensitive attributes. Thus, inspired
by this bias propagation resulted from the graph connectivity,
the following fairness concept is introduced:

p(Aij = 1|si = sj) = p(Aij = 1|si ̸= sj). (5)

Equation (5) aims to make the probabilities of the existence
of an edge between two nodes vi and vj independent of the
sameness of their sensitive attributes.

Following the fairness notion in (5), present adaptive edge
deletion scheme assigns different edge deletion probabilities

based on the sameness of the sensitive attributes that the
corresponding edges connect. Let |Es| and |Ed| denote the
cardinalities of the edge sets including the edges between
the same and different sensitive attributes, respectively. The
adaptive edge deletion probabilities are assigned as

p(e)(eij) =

{
1− p(κ), if si ̸= sj

1− |Ed|
|Es|p

(κ), if si = sj ,
(6)

where p(e)(eij) is the probability that the edge between nodes
vi and vj is deleted, p(κ) is the probability that the edges
linking different sensitive attributes are not deleted.

III. FAIRNESS-AWARE LINK PREDICTION
VIA CONTRASTIVE LEARNING

The contrastive loss utilized in this study maximizes the
node-level agreement, i.e., the representations of the same
nodes created under two different corrupted graph views are
aimed to be discriminated from the embeddings of other nodes
[29]. The corrupted graph views, G̃1 and G̃2, are generated via
the fairness-aware adaptive augmentation strategies proposed
in this study. The node representations generated with these
views are denoted by H1 = f(Ã1, X̃1) and H2 = f(Ã2, X̃2),
where Ãi, and X̃i are the augmented adjacency and feature
matrices of the graph view G̃i.

Let h1
i and h2

i be the representations for node vi, then a node-
level agreement means that h1

i and h2
i are more similar to each

other than to the representations of all other nodes. Therefore,
in the utilized contrastive learning loss, the embeddings of
all nodes vj where i ̸= j are used as negative examples for
the representation of node vi. Overall, considering h1

i as the
anchor representation, the utilized contrastive loss follows as:

ℓ
(
h1
i ,h

2
i

)
=

− log
es(h

1
i ,h

2
i )/τ

es(h
1
i ,h

2
i )/τ+

N∑
k=1

1[k ̸=i]e
s(h1

i ,h
2
k)/τ+

N∑
k=1

1[k ̸=i]e
s(h1

i ,h
1
k)/τ

(7)

where s
(
h1
i ,h

2
i

)
:= c

(
g(h1

i ), g(h
2
i )
)
, with c(·, ·) standing

for the cosine similarity between the input vectors, and g(·)
implemented by using a 2-layer multi-layer perceptron (MLP)
[29]. Parameter τ denotes the temperature hyperparameter, and
1[k ̸=i] ∈ {0, 1} is the indicator function which is equal to 1
when k ̸= i. If h2

i is considered as the anchor example, then
a symmetric version of this loss can also be written, which
results in the following final loss:

J =
1

2N

N∑
i=1

[
ℓ
(
h1
i ,h

2
i

)
+ ℓ

(
h2
i ,h

1
i

)]
. (8)

Upon obtaining node representations H with a model trained
using the loss in (8), link prediction is executed with a linear
classifier based on l2-regularized logistic. The inputs to this
classifier are the concatenated representations of the nodes that
the corresponding edges connect (i.e., [hi;hj ] for edge eij),
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UCLA26 Oklahoma97 Berkeley13

Accuracy (%) ∆SP (%) ∆EO (%) Accuracy (%) ∆SP (%) ∆EO(%) Accuracy (%) ∆SP (%) ∆EO(%)

GRACE [29] 70.64± 0.65 1.02± 0.89 2.44± 1.10 72.29± 0.17 6.61± 0.19 1.33± 0.86 69.08± 0.23 1.01± 0.47 3.51± 1.33

GCA [38] 70.70± 0.55 0.78± 0.73 2.49± 0.73 72.22± 0.11 6.25± 0.58 0.84± 0.46 69.24± 0.24 0.82± 0.47 4.17± 0.97
NIFTY [33] 70.53± 0.19 0.75± 0.61 2.80± 0.60 72.30± 0.13 6.20± 0.50 0.76± 0.35 69.12± 0.29 0.84± 0.63 3.63± 1.51

FM + ED 70.54± 0.39 0.61± 0.88 2.15± 0.89 72.32± 0.17 6.37± 0.63 0.69± 0.53 69.18± 0.51 0.81± 0.77 3.47± 1.09

FM 70.61± 0.73 1.08± 1.28 2.30± 1.24 72.12± 0.22 6.14± 0.32 0.84± 0.61 68.99± 0.35 0.74± 0.71 4.03± 1.74
ED 70.56± 0.62 0.95± 1.05 2.21± 1.44 72.19± 0.20 6.33± 0.25 1.15± 0.77 69.17± 0.20 0.84± 0.54 4.03± 0.79

TABLE I: Comparison of proposed feature masking (FM) and edge deletion (ED) schemes with baselines on Facebook networks.

and the outputs are the binary labels indicating whether the
edges exist or not (i.e. yij = 1 if eij ∈ E , yij = 0 otherwise).

IV. EXPERIMENTS

This section presents experiments over three real-world
networks for link prediction.
Datasets: Experiments are conducted on three Facebook
networks: UCLA26, Oklahoma97, and Berkeley13 [41]. In
these graphs edges are generated based on the friendship
information in social media. Each user (node) has 7 dimensional
nodal features consisting of student/faculty status, gender,
major, etc. Gender is used as the sensitive attribute in the
experiments.
Performance metrics: Accuracy of link prediction is utilized
as the utility measure in the experiments. As the fairness
metrics, the definitions of statistical parity and equal opportunity
are adapted [21] for link prediction such that ∆SP = |P (ŷ =
1 | e ∈ Eχ)−P (ŷ = 1 | e ∈ Eω)| and ∆EO = |P (ŷ = 1 | y =
1, e ∈ Eχ) − P (ŷ = 1 | y = 1, e ∈ Eω)|, where e represents
the edges and ŷ is the prediction for whether the edge exists.
Experimental settings: For a fair comparison, the contrastive
learning framework is kept the same as the one employed in
[29]. The overall results are generated by shuffling the data 4
times and taking the average of the results. For more details
on the experimental setup of proposed augmentation, see [32].
Baselines. Our natural baseline is GRACE [29] where the
non-adaptive augmentation schemes used in [29] are replaced
with our proposed fairness-aware adaptive augmentation. Fur-
thermore, GCA [38] is also used as a baseline, which is another
study built upon [29] for improving utility. Finally, NIFTY
[33] is employed as the fairness-aware baseline study, which
is also the only contrastive learning study considering fairness
to the best of our knowledge.
Results. Table I lists the results of the proposed adaptive
feature masking (FM) and edge deletion (ED) strategies
together with the results of baselines. First, the results in Table I
demonstrate that the employment of proposed FM together with
ED generally improves the overall fairness metrics together with
similar prediction accuracy values. Therefore, the employment
of proposed FM and ED schemes together is a better strategy
for fairness improvement, which can support our claim that
both graph topology and nodal features propagate bias.

The graph contrastive learning schemes GRACE [29], GCA
[38], NIFTY [33]) all employ both feature masking and edge
deletion to corrupt input graphs, which makes them natural

baselines for the proposed FM+ED strategy. Specifically,
as the experimental results are obtained by replacing the
augmentation schemes in GRACE with the proposed strategies
herein, a performance comparison with GRACE can show
solely the effects of the proposed augmentation schemes. Table
I shows that the proposed augmentation methods result in better
fairness measures together with similar link prediction accuracy
compared to GRACE, which showcases the effectiveness of
the proposed fairness-aware augmentation designs.

The results in Table I demonstrate that NIFTY outperforms
our proposed FM+ED strategy on Oklahoma in terms of ∆SP ,
while our scheme is better than NIFTY in terms of ∆EO.
However, results further show that our proposed FM+ED
scheme performs better than NIFTY [33] both on UCLA26 and
Berkeley13 in terms of both fairness metrics. Therefore, the
overall superior fairness performance of our method compared
to NIFTY can indicate that the focus on counterfactual fairness
in NIFTY may limit its efficacy for improving other fairness
metrics.

Finally, GCA is built upon GRACE via adaptive augmen-
tation designs aiming to improve the utility. As the proposed
adaptive augmentation strategies of GCA are not fairness-aware,
their effects on fairness are not predictable, which is also shown
by the results in Table I. Overall, the proposed fairness-aware
strategies generally lead to better fairness metrics than other
state-of-the-art graph contrastive learning methods, with similar
link prediction accuracy.

V. CONCLUSION

This study presents adaptive, fairness-aware graph data
augmentation strategies for both graph structure and nodal
features to mitigate bias in link prediction. Experimental results
for the proposed schemes show that the proposed fairness-
aware designs can enhance fairness measures while providing
comparable link prediction accuracy to the state-of-the-art.
While the proposed schemes can be employed in the learning
process as in-processing fairness tools, they can also be utilized
as pre-processing tools on the input graph. The present work
opens up several intriguing future directions: i) extension
of the present work to the cases where there exist multiple
sensitive attributes; ii) more extensive experimental results
for the proposed framework, when it is employed as a pre-
processing tool on different GNN-based learning schemes other
than contrastive methods.
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