
Dynamic Graph Topology Learning with

Non-Convex Penalties

Reza Mirzaeifard⋆, Vinay Chakravarthi Gogineni⋆, Naveen K. D. Venkategowda§, Stefan Werner⋆

⋆Dept. of Electronic Systems, Norwegian University of Science and Technology-NTNU, Norway
§Department of Science and Technology, Linköping University, Sweden

E-mails: {reza.mirzaeifard, vinay.gogineni, stefan.werner}@ntnu.no, naveen.venkategowda@liu.se

Abstract—This paper presents a majorization-minimization-
based framework for learning time-varying graphs from spatial-
temporal measurements with non-convex penalties. The proposed
approach infers time-varying graphs by using the log-likelihood
function in conjunction with two non-convex regularizers. Using
the log-likelihood function under a total positivity constraint,
we can construct the Laplacian matrix from the off-diagonal
elements of the precision matrix. Furthermore, we employ non-
convex regularizer functions to constrain the changes in graph
topology and associated weight evolution to be sparse. The
experimental results demonstrate that our proposed method
outperforms the state-of-the-art methods in sparse and non-
sparse situations.

Index Terms—Graph topology learning, time-varying graphs,
Laplacian constraints, non-smooth and non-convex penalties

I. INTRODUCTION

The data in a variety of networked structures, including

social networks [1], brain networks [2], traffic networks [3],

electronic networks [4], and sensor networks [5], exhibit

certain intrinsic relationships with the underlying network

structure. The inherent network structure can be exploited

to analyze data from large-scale networks in an efficient

manner. A graph and graph signal are the most natural ways to

represent the inherent structure and network data [6]. However,

in many applications the underlying graph is unavailable [1]–

[3]. In such scenarios one of the challenges in graph signal

processing is to learn the graph topology.

Prior to recent developments, approaches to identify graph

topology relied on learning static networks, i.e., networks

whose structure does not change over time [6]. However, the

increasing prevalence of networks with time-varying compo-

nents has quickly necessitated the development of alternative

methods for graph topology learning. For example, it is of

interest to infer time-varying networks of functional compo-

nents in the brain using electroencephalography (EEG) or

functional magnetic resonance imaging (MRI) data [7], to

identify relationships between companies based on historical

stock prices [8], and to capture changes in the environment

factors [9]. As a result, it would be impossible to take into

account the dynamic nature of these structures using a static

approach. A straightforward approach would be to group

the observation time into non-overlapping windows and then

estimate each graph individually using a static graph learning

This work was supported by the Research Council of Norway.

algorithm. However, such an approach discards the temporal

relationship between graphs, which can improve estimation

accuracy, and it may require a large sample size within each

time window, which is not always feasible.

Several works in the literature have addressed the time-

varying graph topology learning [10]–[13]. Time-varying

graphs are often learned by splitting the data into separate

windows and learning a graph for each separate window

with assumptions about the relationships between the graphs.

Therefore, a transition constraint must be used [10], [13]. The

differences between the algorithms are a result of considering

different objective and regulation functions, which are influ-

enced by prior knowledge of graph data and transitions, such

as sparsity, smoothness, and bandlimiting. In [10] an algorithm

for time-varying graph learning is proposed considering the

graph signal to be smooth and the transitions between graphs

sparse. As a result, this algorithm considers Direchlet energy

functions as the main objective function that is regulated by

Frobenius norm to ensure graph sparsity, and fussed LASSO

(FLasso) to enforce sparse temporal transitions. However,

a Dirichlet energy objective function can be viewed as an

approximation of a log-likelihood function for learning graphs

[8], and in general using a log-likelihood function may lead to

better estimation accuracy. Moreover, the Frobenius norm does

not promote sparsity and zero elements as effectively as the

l1 norm, minimum concave penalty (MCP) [14] or smoothly

clipped absolute deviation (SCAD) [15] penalties.

This paper proposes log-likelihood approaches with sparse

penalties to enforce sparsity in graphs, and sparse penalties

for transition in order to emphasize the similarity between

successive graphs. Since the l1 norm with log-likelihood

cannot provide sparse solutions for graphs, we use SCAD to

encourage sparsity in each time window [16]. For the temporal

regularizer, both SCAD and FLasso are considered. In contrast

to FLasso, SCAD is more capable of identifying preserved

and changed edges across successive windows, which makes

it a more efficient temporal regulator. We consider the total

positivity constraint to obtain a Laplacian matrix from the

off-diagonal elements of the precision matrix. The result-

ing optimization problem is solved using the majorization-

minimization (MM) framework [17], where each minimization

problem can be effectively solved with an alternating direction

method of multipliers (ADMM) [18] based algorithm.

682ISBN: 978-1-6654-6798-8 EUSIPCO 2022

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a weighted undirected graph G = (V, E ,W),
where V = {1, · · · , P} is the node set, E ⊆ {1, · · · , P} ×
{1, · · · , P} denotes the edge set, and W is the symmetric

weighted adjacency matrix, whose elements are non-negative

edge weights. It is assumed that there no self-loops or multiple

edges in the graph, which implies diag(W) = 0. A graph

signal is given by x = [x1, · · · , xP]
T ∈ R

P , where xi

is a measurement at node i. If (i, j) ∈ E , xi and xj are

mutually dependent or similar with the similarity proportional

to Wij . The goal of graph topology learning is to estimate

the weighted adjacency matrix W, given the data matrix

X = [x(1), · · · ,x(M)] as input, where x
(m) is the mth data

vector and M is the number of graph signals.

In graph theory, the graph Laplacian is defined by L = D−
W, where D is a diagonal weighted degree matrix with Dii =
∑P

j=1 Dij , ∀i ∈ {1, · · · , P}. Equivalently, the Laplacian can

be defined as L ∈ L where L is

L =

{

L ∈ R
N×N : L = L

T, Lij ≤ 0, (i 6= j),
Lii = −

∑

i6=j Lij

}

. (1)

Since the Laplacian matrix is not a full rank matrix, the

generalized Laplacian of a graph may be defined as Lg =
L + V, where V is a diagonal matrix. If all the diagonal

elements of V are strictly positive, then Lg is positive-definite.

The graph signal x generation can be described as [19]

x = Hx0 + ǫ, (2)

where x0 is the latent variable, H represents the graph Fourier

transformation matrix, and ǫ ∼ N (0, σ2
ǫ I) is the additive

noise. Assuming that x0 is drawn from a zero mean Gaussian

distribution, it is easily shown that the graph signal can be

modeled as follows [19]:

x
(m) ∼ N (0,L† + σ2

ǫ I), ∀m ∈ {1, · · · ,M}, (3)

where A
† represents the Moore-Penrose pseudo-inverse of A.

Therefore, from (3) one can see the dependence of the graph

signal on the Laplacian matrix L or generealized Laplacian

matrix Lg = L + σ2
ǫ I. Consequently, it can be assumed that

x is multivariate Gaussian and estimate the precision matrix

Ω = Σ
−1 of Gaussian graphical model based on the sample

covariance matrix Σ̂ = 1
M
XX

T.

The log-likelihood is a well studied objective function for

estimating precision matrices of Gaussian graphical models.

The Laplacian matrix can b estimated by considering either

Ω = L with the constraint Ω ∈ L [16], [20] or having

Ω = Lg and Ω ≻ 0 [21]. Furthermore, one can also impose

the total positivity constraint Ωij ≤ 0, ∀i 6= j and extract the

weighted matrix from off-diagonal elements of the precision

matrix [22]. The Laplacian matrix can be estimated by the

weighted adjacency matrix. The problem of estimating the

precision matrix with log-likelihood objective with penalties

and total positivity constraint can be expressed as [22]

Ω̂ =argmin
{Ω}

− log(det(Ω)) + tr(ΩΣ̂) + ωPod(Ω), (4)

subject to Ω ≻ 0, [Ω]ij ≤ 0 ∀i 6= j,

where Pod(·) is the penalty function to incorporate prior

knowledge about the off-diagonal elements of Ω. Several

functions can be used to impose sparsity on a structure. For

example, the LASSO penalty is a well-known for enforcing

sparsity in graphs. However, it has been shown that the LASSO

penalty is unable to recover the Laplacian structure when

used with log-likelihood objective function; thus, resulting in

estimate with fully connected graphs [16]. Therefore, in this

paper, we investigate the SCAD function which is non-convex

to provide sparsity in the estimated graph with a lower bias

effect than LASSO [16], [23].

A time-varying weighted graph refers to a sequence of

weighted graphs, i.e., {Gt}Tt=1 = (V, Et,Wt)
T
t=1. All nodes in

each graph remain the same, but the edges may change. Time-

varying graph learning involves identifying the sequence of

graph Laplacians {L1, · · ·LT }, associated with the underlying

sequence {X1, · · · ,XT }. We can model time-varying graph

learning by utilizing (3) and a graph evolution process as [10]

x
(m)
t ∼ N (0,L†

t + σ2
ǫ I), ∀m ∈ {1, · · · ,M}

Lt =

{

L1, t = 1

Lt−1 +∆Lt, t > 1
(5)

where x
(m)
t , Lt, and ∆Lt represent, respectively, a signal,

graph Laplacian and graph variation at a given time. In order

to enhance the estimation accuracy of time-varying graphs,

one can utilize the prior information about the graph variation.

Thus, the problem of learning time-varying graph topology can

be formulated as an optimization given by

Ω̂ = argmin
{Ω1,··· ,ΩT }

T
∑

t=1

− log(det(Ωt)) + tr(ΩtΣ̂t) + ωPod(Ωt)

+ η

T
∑

t=2

Ψ(Ωt −Ωt−1),

subject to Ωt ≻ 0, [Ωt]ij ≤ 0 ∀i 6= j, ∀t ∈ {1, · · · , T},
(6)

where Ψ(·) is a temporal regulation function. In order to

enforce sparse change between two successive time-windows,

the FLasso regulation function can be used [24]. However,

FLasso does not distinguish between situations where an edge

changes or remains the same in two successive time windows.

This leads to unexpected similarity between edges across

successive windows and a high bias. Also, when an abrupt

change occurs, FLasso leads to a smooth change. Several

non-convex penalties, such as MCP and SCAD, can help

to distinguish between the two situations, so they can both

maximize similarity when needed and promote change when

necessary with a low bias effect. Therefore, we study the

possibility of using non-convex penalties, such as SCAD, as

a temporal regulation function Ψ(·).

III. PROPOSED MAJORIZATION-MINIMIZATION BASED

LEARNING APPROACH

In order to deal with the non-convexity of SCAD in opti-

mization problem (6), we use the majorization-minimization

683

(MM) framework [17], which is a two-step iterative procedure

as explained below. In the first step, one can construct a

majorized function f (l+1)(Ω) that locally approximates the

objective function F (Ω) at Ω̂
(l)

, which at iteration l + 1 is

given by

f (l+1)(Ω) =
T
∑

t=1

− log(det(Ωt)) + tr(ΩtΣ̂t)

+
∑

i6=j

ω
(l+1)
t,ij |[Ωt]ij |+

T
∑

t=2

T
∑

i=1

T
∑

j=1

η
(l+1)
t,ij |[Ωt −Ωt−1]ij |,

(7)

where η
(l+1)
t,ij = |ηP ′

od([Ω̂
(l)

t]ij)| and ω
(l+1)
t,ij = |ωΨ′([Ω̂

(l)

t −

Ω̂
(l)

t−1]ij)| and P ′
od(x) is the sub-derivative of function P ′

od(·) at

point x. The second step consists of minimizing the majorized

function f (l+1)(Ω) under the mentioned constraints. For this

purpose, we propose an ADMM-based method to solve the

optimization.

To apply ADMM algorithm, one can rewrite the (6) as

Ω̂
(l+1)

= argmin
{Ω1,··· ,ΩT }

T
∑

t=1

(

− log(det(Ωt)) + tr(ΩtΣ̂t) +
∑

i6=j

ω
(l+1)
t,ij |[Z0,t]ij |

)

+
T
∑

t=2

T
∑

i=1

T
∑

j=1

η
(l+1)
t,ij |[Z2,t − Z1,t−1]ij |,

subject to Z0,t = Ωt, ∀t ∈ {1, · · · , T}

(Z1,t−1,Z2,t) = (Ωt−1,Ωt), ∀t ∈ {2, · · · , T}

Ωt ≻ 0, [Z0,t]ij ≤ 0, ∀i 6= j, ∀t ∈ {1, · · · , T},
(8)

where Z = {Z0,Z1,Z2} = {[Z0,1, · · · ,Z0,T], [Z1,1, · · · ,
Z1,T−1], [Z2,2, · · · ,Z2,T]} is a set of auxiliary variables.

Consequently, the Lagrangian function can be written as

Lρ(Ω,Z,U) =

T
∑

t=1

(

− log(det(Ωt)) + tr(ΩtΣ̂t)

+
∑

i6=j

ω
(l+1)
t,ij |[Z0,t]ij |+

ρ

2
‖Ωt − Z0,t +U0,t‖F

)

+

T
∑

t=2

(T
∑

i=1

T
∑

j=1

η
(l+1)
t,ij |[Z2,t − Z1,t−1]ij |

+
ρ

2
‖Ωt−1 − Z1,t−1 +U1,t−1‖F +

ρ

2
‖Ωt − Z2,t +U2,t‖F

)

,

(9)

where ρ denotes the ADMM penalty parameter, U =
{U0,U1,U2} = {[U0,1, · · · ,U0,T], [U1,1, · · · ,U1,T−1],
[U2,2, · · · ,U2,T]} is the scaled dual variable, and Ω =
{Ω1, · · · ,ΩP }. Since the constraints Ωt ≻ 0, and Z0,t ∈
Vp = {Vij ≤ 0, ∀i 6= j} can be involved in the minimization

of the sub-problems, there is no need for dual variables

associated with them. In this case, the problem can be solved

with the classic two-block ADMM algorithm whose (k+1)th
iteration can be written as

Ω
(k+1) = argmin

Ω≻0

Lρ(Ω,Z(k),U(k)), (10)

Z
(k+1) = argmin

Z0∈Vp,Z1,Z2

Lρ(Ω
(k+1),Z,U(k)), (11)

U
(k+1) = U

(k) + (Ω(k+1) − Z
(k+1)). (12)

Within the (k + 1)th iteration, separate updates can be per-

formed for each Ωt as follows:

Ω
(k+1)
t = argmin

Ωt≻0

− log(det(Ωt))+tr(ΩtΣ̂t)+
1

2µ
‖Ωt−A‖F ,

(13)

with A =
Z

(k)
0,t+Z

(k)
1,t+Z

(k)
2,t−U

(k)
0,t−U

(k)
1,t−Z

(k)
2,t

3 , and µ = Mt

3ρ . From

[18], one can see that:

Ω
(k+1)
t :=

µ

2
Q(D+

√

D2 + 4µ−1I)QT, (14)

where QDQ
T is the eigen value decomposition of A+A

T

2µ −

Σ̂t.

Updating Z0 can be accomplished by updating each Z0,t

separately as follows:

Z
(k+1)
0,t = argmin

Z0,t∈Vp

∑

i6=j

ω
(l+1)
t,ij |[Z0,t]ij |

+
ρ

2
‖Ω

(k+1)
t − Z0,t +U

(k)
0,t ‖F . (15)

The constraint can be treated as a simple mapping function to

a non-positive domain for off-diagonal elements. Therefore,

the solution comes as follows:

[Z
(k+1)
0,t]ij =

{

[Ω
(k+1)
t +U

(k)
0,t]ij , i = j

min(0,Shrink([Ω
(k+1)
t +U

(k)
0,t]ij ,

ωt,ij

ρ
)), i 6= j

(16)

where Shrink(u, α) = u
|u| max{0, |u| − α}.

For Z1 and Z2, the update steps can then be separated into

Z1,t−1 and Z2,t ∀t ∈ {2, · · · , T} as follows:

[

Z
(k+1)
1,t−1

Z
(k+1)
2,t

]

= argmin
Z1,t−1,Z2,t

T
∑

i=1

T
∑

j=1

η
(l+1)
t,ij |[[Z2,t − Z1,t−1]ij |

+‖Ω
(k+1)
t−1 −Z1,t−1+U

(k)
1,t−1‖F +‖Ω

(k+1)
t −Z2,t+U

(k)
2,t ‖F .

(17)

As it can be seen in [25], the above step can be simplified to:

[

Z
(k+1)
1,t−1

Z
(k+1)
2,t

]

=

1

2

[

Ω
(k+1)
t +U

(k)
2,t +Ω

(k+1)
t−1 +U

(k)
1,t−1

Ω
(k+1)
t +U

(k)
2,t +Ω

(k+1)
t−1 +U

(k)
1,t−1

]

+
1

2

[

−E

E

]

, (18)

where [E]ij = Shrink([Ω
(k+1)
t − Ω

(k+1)
t−1 + U

(k)
2,t −

U
(k)
1,t−1]ij ,

2ηij

ρ
), ∀(i, j) ∈ {1, · · · , P} × {1, · · · , P}.

684

Moreover, scaled dual variables can be updated as

U
(k+1)
0,t = U

(k)
0,t + (Ω(k+1) − Z

(k+1)
0,t), ∀t ∈ {1, · · · , T} (19)

U
(k+1)
1,t = U

(k)
1,t + (Ω(k+1) − Z

(k+1)
1,t), ∀t ∈ {1, · · · , T − 1}

(20)

U
(k+1)
2,t = U

(k)
2,t + (Ω(k+1) − Z

(k+1)
2,t).∀t ∈ {2, · · · , T} (21)

Finally, a stopping criteria as in [18] can be adapted for the

minimization step. It is worth noting that, the algorithm will be

terminated in accordance with the stopping criteria specified

in the MM framework [17].

IV. SIMULATION RESULTS

In this section, we examine the efficacy of our proposed

time-varying graph topology learning method using synthetic

data. For comparative assessment, we utilized the time-varying

graph learning (TVGL) method proposed in [10]. In all exper-

iments, the optimal hyper-parameters values for each method

were chosen through grid search.

A time-varying Erdős–Rényi graph is used as a data source

for our experiments. As a starting point, we construct an

Erdős–Rényi graph consisting 36 nodes with an edge probabil-

ity Pe = 0.06. The edge weights are distributed uniformly in

the interval [2, 5]. We assume that there are 100 time windows

and the changes in the topology occur in time windows

11, 21, · · · , and 91. The changes are generated by re-sampling,

and re-weighting 10% of the edges in Wt−1. As a result, data

point x
(m)
t is generated as follows: x

(m)
t ∼ N (0,L†

t + σ2
ǫ I),

where σǫ = 0.1. For our experiments, we assume Mt = 10
data samples per time window. The results in Fig. 1 indicate

that TGAM with SCAD as sparse and temporal penalties per-

form better than alternative methods for edge recovery, edge

weight estimation, and capturing changes with a lower bias

effect when transitions occur. Moreover, Fig. 1a demonstrates

that SCAD is more effective in preserving similarity than

FLasso. In Fig. 2, it is more evident that SCAD can act more

selectively than l1 to impose similarity between two time slots,

and can alleviate the bias effect of Flasso.

In the second scenario, we compared the performance of

algorithms against time-varying sparsity level. As a measure

of performance, we considered the F-measure [10], which

is a weighted average of precision and recall that reflects

the accuracy of the estimated graph structure., and relative

error [10], which indicates how accurate the edge weights

of the estimated graph are. Under the same settings as in

first scenario, we generated time-varying graphs for differ-

ent Pe ∈ {0.06, 0.08, · · · , 0.5} representing various sparsity

levels. The simulation results in terms of F-measure and

relative error, obtained by averaging over 20 independent

trails are plotted in Fig. 3 and Fig. 4. In terms of the F-

measure, TVGM-SCAD-SCAD outperforms other methods

both in sparse and non-sparse situations, as shown in Fig. 3.

On the other hand, TGAM-SCAD-SCAD and TGAM-SCAD-

FLasso provide better relative error than TVGL-FLasso in

sparse enough situations, as shown in Fig. 4.

20 40 60 80 100

20

40

60 0

1

2

3

4

(a)

20 40 60 80 100

20

40

60 0

2

4

6

(b)

20 40 60 80 100

20

40

60 0

1

2

3

4

5

(c)

20 40 60 80 100

20

40

60 0

1

2

3

4

5

(d)

Fig. 1: (a) Ground truth, (b) TGL-FLasso, (c) TGAM-SCAD-

FLasso, (d) TGAM-SCAD-SCAD.

0 20 40 60 80 100

Time slot

2

3

4

5

6

7

8

9

10

TVGL-FLasso

TGAM-SCAD-FLasso

TGAM-SCAD-SCAD

Fig. 2: There is a display of the temporal variation in the time-

varying graph for TVGL-FLasso, TVGM-SCAD-FLasso and

TVGM-SCAD-SCAD.

V. CONCLUSION

In this paper, we have presented a learning method for

time-varying graph topology using log-likelihood formulations

with non-convex penalties. To obtain Laplacian graphs, we

imposed the total positivity constraint, and then extracted

the Laplacian matrices from the diagonal of the precision

matrices. For the first time, we adopted a non-convex and

non-smooth penalty function, SCAD, as a temporal regulation

function. SCAD penalty is demonstrated to be more effective

in capturing abrupt changes and preserving similarity in time-

varying graphs. Based on F-measure and relative error, our

algorithm performed better than existing methods.

685

0 0.1 0.2 0.3 0.4 0.5

SP

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

TVGL-FLasso

TGAM-SCAD-FLasso

TGAM-SCAD-SCAD

Fig. 3: F-measure of learning time-varying graphs for different

levels of sparsity.

0 0.1 0.2 0.3 0.4 0.5

SP

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TVGL-FLasso

TGAM-SCAD-FLasso

TGAM-SCAD-SCAD

Fig. 4: Relative error of learning time-varying graphs for

different levels of sparsity.

REFERENCES

[1] A. Ahmed and E. P. Xing, “Recovering time-varying networks of
dependencies in social and biological studies,” Proc. National Academy

Sci., vol. 106, no. 29, pp. 11 878–11 883, July 2009.
[2] J. Richiardi, S. Achard, H. Bunke, and D. Van De Ville, “Machine learn-

ing with brain graphs: Predictive modeling approaches for functional
imaging in systems neuroscience,” IEEE Signal Process. Mag., vol. 30,
no. 3, pp. 58–70, Apr. 2013.

[3] N. Hu, D. Zhang, K. Xie, W. Liang, and M.-Y. Hsieh, “Graph learning-
based spatial-temporal graph convolutional neural networks for traffic
forecasting,” Connection Sci., pp. 1–20, July 2021.

[4] F. R. Rasim, S. M. Sattler et al., “Analysis of electronic circuits with the
signal flow graph method,” Circuits Syst., vol. 8, no. 11, p. 261, Nov.
2017.

[5] I. Jabłoński, “Graph signal processing in applications to sensor networks,
smart grids, and smart cities,” IEEE Sensors J., vol. 17, no. 23, pp.
7659–7666, Dec. 2017.

[6] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs
from data: A signal representation perspective,” IEEE Signal Process.

Magaz., vol. 36, no. 3, pp. 44–63, May 2019.
[7] M. G. Preti, T. A. Bolton, and D. Van De Ville, “The dynamic functional

connectome: State-of-the-art and perspectives,” Neuroimage, vol. 160,
pp. 41–54, Oct. 2017.

[8] J. V. de Miranda Cardoso and D. P. Palomar, “Learning undirected
graphs in financial markets,” in Proc. 54th IEEE Int. Conf. Signals,

Sys., Comput., 2020, pp. 741–745.
[9] L. Zhang, G. Yang, and B. C. Stadie, “World model as a graph:

Learninglatent landmarks for planning,” in Int. Conf. Mach. Learn.,
2021, pp. 12 611–12 620.

[10] K. Yamada, Y. Tanaka, and A. Ortega, “Time-varying graph learn-
ing with constraints on graph temporal variation,” arXiv preprint

arXiv:2001.03346, Jan. 2020.
[11] A. Natali, E. Isufi, M. Coutino, and G. Leus, “Learning time-varying

graphs from online data,” arXiv preprint arXiv:2110.11017, Oct. 2021.
[12] K. Yamada, Y. Tanaka, and A. Ortega, “Time-varying graph learning

based on sparseness of temporal variation,” in Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., 2019, pp. 5411–5415.
[13] X. Zhang and Q. Wang, “Time-varying graph learning under structured

temporal priors,” arXiv preprint arXiv:2110.05018, Feb. 2022.
[14] C.-H. Zhang, “Nearly unbiased variable selection under minimax con-

cave penalty,” Annals stat., vol. 38, no. 2, pp. 894–942, Apr. 2010.
[15] J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood

and its oracle properties,” J. Amer. stat. Assoc., vol. 96, no. 456, pp.
1348–1360, Dec. 2001.

[16] J. Ying, J. V. de Miranda Cardoso, and D. Palomar, “Nonconvex
sparse graph learning under Laplacian constrained graphical model,”
Adv. Neural Inf. Process. Syst., vol. 33, Dec. 2020.

[17] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algo-
rithms in signal processing, communications, and machine learning,”
IEEE Trans. on Signal Process., vol. 65, no. 3, pp. 794–816, Feb 2016.

[18] S. Boyd, N. Parikh, and E. Chu, Distributed Optimization and Statistical

Learning via the Alternating Direction Method of Multipliers. Now
Publishers Inc, 2011.

[19] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning
Laplacian matrix in smooth graph signal representations,” IEEE Trans.

Signal Process., vol. 64, no. 23, pp. 6160–6173, Aug. 2016.
[20] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data

under Laplacian and structural constraints,” IEEE J. Sel. Topics Signal

Process., vol. 11, no. 6, pp. 825–841, July 2017.
[21] E. Pavez, H. E. Egilmez, and A. Ortega, “Learning graphs with mono-

tone topology properties and multiple connected components,” IEEE

Trans. Signal Process., vol. 66, no. 9, pp. 2399–2413, Mar. 2018.
[22] J. K. Tugnait, “Sparse graph learning under Laplacian-related con-

straints,” IEEE Access, vol. 9, pp. 151 067–151 079, Nov. 2021.
[23] Y. Zhang, K.-C. Toh, and D. Sun, “Learning graph Laplacian with MCP,”

arXiv preprint arXiv:2010.11559, Oct. 2020.
[24] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity

and smoothness via the fused lasso,” J. the Royal Stat. Soc.: Series B

(Stat. Method.), vol. 67, no. 1, pp. 91–108, Dec. 2005.
[25] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Network inference via the

time-varying graphical lasso,” in Proc. 23th Int. Conf. Knowl. Discovery

and Data Mining, 2017, pp. 205–213.

686

