
Dynamic Bi-Colored Graph Partitioning
Yanbin He†, Mario Coutino‡, Elvin Isufi†, Geert Leus†

†Delft University of Technology, Delft, The Netherlands
‡Radar Technology, TNO, Den Haag, The Netherlands

Abstract—In this work, we focus on partitioning dynamic
graphs with two types of nodes (bi-colored), though not necessar-
ily bipartite graphs. They commonly appear in communication
network applications, e.g., one color being base stations, the other
users, and the dynamic process being the varying connection
status between base stations and moving users. We introduce
a partition cost function that incorporates the coloring of the
graph and propose solutions based on the generalized eigenvalue
problem (GEVP) for the static two-way partition problem.
The static multi-way partition problem is then handled by a
heuristic based on the two-way partition problem. Regarding
the adaptive partition, an eigenvector update-based method is
proposed. Numerical experiments demonstrate the performance
of the devised approaches.

Index Terms—graph partitioning, spectral clustering, general-
ized eigenvalue problem, dynamic graphs

I. INTRODUCTION

Graphs have been gaining more and more attention since
they can model networked data and their complex rela-
tions [23]. They are pervasive and present in several real-
world applications, e.g., social media [16], the internet [4], and
sensor networks [7]. The graph structure can be used to cluster
(or partition) a network in subgroups that exhibit a certain
type of closeness. For example, by performing clustering
on graphs, we can identify groups of nodes sharing certain
similarities [24], which has benefits for certain applications.
In long-term evolution cellular networks, for instance, the
capacity can be improved by performing clustering based on
network connectivity [6]. Another example can be found in
a computer with multiple processors, where an appropriate
clustering of the processors can result in a good load balancing
and minimize the ratio of communication over computation
cost for a given task [17].

In the literature, various clustering techniques have been
proposed. Among them, spectral clustering has become one of
the most popular clustering algorithms [22]. Spectral clustering
utilizes the information carried by the eigenvectors of the
graph Laplacian to partition the vertices of the graph [10].
Spectral clustering is conceptually simple and can be solved
efficiently by linear algebra methods [21] and often achieves
better results compared with traditional methods [22].

To derive appropriate and meaningful clusters, a well-
chosen criterion is required, which can be translated into
a cost function that needs to be optimized. Some well-
known cost functions, such as MinMaxCut [5], [12] and

At the time of performing this work, Yanbin was partially supported by the
ME-MSc scholarship from TU Delft and Mario Coutino by CONACYT. The
work of E. Isufi is supported by the TU Delft AI Labs programme. emails:
{y.he-1, e.isufi-1, g.j.t.leus}@tudelft.nl, mario.coutinominguez@tno.nl.

NormalizedCut [19], are generally applicable and capture
metrics of interest for partitioning typical graphs. However, for
some applications, we might be interested in specific goals ren-
dering general cost functions not applicable. For example, in
a communication network where there exist different types of
nodes (colors), e.g., users and base stations, typical cost func-
tions for graph partitioning are oblivious to the graph coloring.
Furthermore, for some applications, graphs as models should
be evolving in time, i.e., they should be dynamic [13]. These
dynamics can be variations of edge weights, or the number of
nodes within the graph. As partitioning dynamic graphs from
scratch might incur a high computational burden, adaptively
updating graph clusters becomes of utmost importance.

In our work, we focus on partitioning dynamic bi-colored
graphs, where there are two types of vertices and the dynamics
are related to variations of edge weights. Taking into account
the different node types, we put forth a cost function capturing
the color dependency of the partition which is relevant to
typical communication network clustering problems (Sec. II).
To tackle the partition problem, we first focus on the static two-
way partitioning problem (bisection), which is a special case
of the multi-way partition problem, and provide a way to relax
the introduced cost function relying on spectral clustering. This
approach is then extended to the multi-way partition problem
(Sec. III). Finally, based on the discussions on the static
case, an adaptive partitioning method is introduced, using the
eigenvectors update approach based on matrix perturbation
theory (Sec. IV).

II. BI-COLORED GRAPH PARTITIONING

Let us consider a (possibly) dynamic graph G(V, E) with
adjacency matrix W and graph Laplacian L, where V and E are
the vertex set and edge set, respectively. We denote |V| = N
and assume there are two types of vertices (colors) B and U
in the graph, satisfying B ∪ U = V and B ∩ U = ∅. An edge
ei,j ∈ E can exist between the same and different types of
vertices and its edge weight is denoted as [W]i,j = wi,j ≥ 0.
Thus, this graph is not necessarily bipartite.

Now, let us consider a 4G/5G cellular network to motivate
the (dynamic) bi-colored graph partition problem. When the
coordinated multipoint concept is used to improve the perfor-
mance, data has to be exchanged between base stations [2],
[3], [9], [11], [26]. This data, e.g., channel state information or
user data, is shared through the backhaul network. However,
exchanges through the whole network lead to a signaling
overhead and are thus infeasible. Therefore, the data should be
exchanged locally [1], [25], that is, we need to identify local

692ISBN: 978-1-6654-6798-8 EUSIPCO 2022

clusters and communicate the information within each cluster.
In this case, we have two types of nodes (colors) given by
base stations and users and two types of edges with varying
weights, including wireless links (base stations - users) and
wired links (base stations - base station). As the users are
mobile, the connection status between users and base station
changes over time (dynamic).

In such a setting, it is desired to minimize the commu-
nication across local clusters, since the traffic routed between
different clusters is expensive [8], [14]. In addition, to use base
stations efficiently, clusters need to be as dense as possible
regarding wireless links (base stations - users). These goals
can be formally written as follows: given a number of clusters
K, our objective is to decompose the vertices of the dynamic
graph into K disjoint and non-empty clusters {Cm}m=1,...,K

by minimizing the following cost function

J({Cm}) =
K∑

m=1

∑
i∈Cm,j∈V\Cm

wi,j∑
i∈Bm,j∈Um

wi,j
, (1)

where Bm = Cm ∩ B (̸= ∅), Um = Cm ∩ U (̸= ∅) are
non-empty set of nodes of the same color in each cluster Cm
and Ci ∩ Cj = ∅ implies there are no edges between two
clusters, ∀i, j ∈ {1, ...,K}, i ̸= j. In other words, we want
to minimize the connections between the different clusters
(captured in the numerator) yet maximize the connections
between the different types of nodes within every cluster
(captured in the denominator). For the dynamic setting, this
problem needs to be solved as the graph evolves.

III. STATIC TWO-WAY PARTITIONING PROBLEM

To approach the adaptive multi-way clustering problem,
we first focus on the simpler static graph bisection problem,
which is a special case with K = 2. As for classical graph
partitioning, graph bisection sheds light on how to deal with
the multi-way partition problem. After the static case, we will
go to the dynamic case.

A. Matrix-Vector Form of the Cost Function

To rearrange cost (1) in a more manageable form, let us
define the cluster indicator vector for set Cm as cm ∈ {0, 1}N ,
i.e., [cm]i = 1 if i ∈ Cm. Further, since cm ̸= 0, ∀m and∑K

m=1 cm = 1, we could write the numerator of (1) as∑
i∈Cm,j∈V\Cm

wi,j = c⊤mW(1 − cm)
(a)
= c⊤mLcm,

where (a) is due to c⊤mW1 = c⊤mdiag(D) = c⊤mDcm since
cm is a binary vector. Likewise, let us define the two color
indicator vectors [b]i = 1 if i ∈ B and [u]i = 1 if i ∈ U and
the respective indicator matrices Bin := diag(b) ∈ {0, 1}N×N

and Uin := diag(u) ∈ {0, 1}N×N to write the denominator
of (1) as ∑

i∈Bm,j∈Um

wi,j = c⊤mBinWUincm = c⊤mW̃cm.

where we defined W̃ := BinWUin for a compact notation.
Bringing these together, the cost function (1) becomes

J({cm}) =
K∑

m=1

c⊤mLcm
c⊤mW̃cm

. (2)

For K = 2, one indicator vector is the direct complement
of the other, i.e., c2 = 1 − c1. Hence, we can use a single
variable denoted as c. The cost then becomes

J(c) =
c⊤Lc
c⊤W̃c

+
c⊤Lc

κ− q⊤c + c⊤W̃c
, (3)

where κ := 1⊤W̃1, q := (W̃
⊤
+ W̃)1, and c ∈ {0, 1}N with

c ̸= 0,1.

B. Solution based on the GEVP

Similar to previous works [5], [22], to simplify the opti-
mization, we drop the binary constraints on c and relax it
to RN , which is then called the continuous indicator vector.
Clearly, this cost function is scale sensitive in c because of the
existence of the linear term. Furthermore, the solutions c = 0
or 1 should be avoided. To deal with these issues, we adopt
the constraint c⊤Lc = 1 on c. In summary, we focus on the
following optimization problem:

min
c∈RN

J(c) s.t. c⊤Lc = 1. (4)

To partition the graph, we first provide the critical points
of (4).

Proposition 1. Consider the optimization problem (4). Its
critical points correspond to vectors c satisfying the expression

WS(c − 0.5γ1) = λL(c − 0.5γ1), (5)

where

λ =
4b1b2(b1 + b2 + νb1b2)

a(b21 + b22)
, γ =

2b21
b21 + b22

,

with a := c⊤Lc, b1 := c⊤W̃c, b2 := κ − q⊤c + c⊤W̃c, ν =
−κ(b21 + b22)

−1 the optimal Lagrange multiplier, and WS :=

2(W̃
⊤
+ W̃).

Proof. Let us start from the Lagrangian L(c, ν) = J(c) +
ν(c⊤Lc − 1) with Lagrangian multiplier ν ∈ R. Taking the
gradient of this Lagrangian w.r.t. c, and equating it to zero,
we obtain the expression

WSc = λLc + γq, (6)

where λ and γ are defined as in the proposition based on the
earlier definitions of a, b1, and b2. Note that at this point, we
did not yet determine the Lagrangian parameter ν which will
be discussed later. Taking the structure of q = (W̃

⊤
+ W̃)1

into consideration, we can further simplify (6) to

WS(c − 0.5γ1) = λLc.

Since 1 is in the kernel of L, we then also have

WS(c − 0.5γ1) = λL(c − 0.5γ1), (7)

693

which is a generalized eigenvalue problem (GEVP). And if
we denote the generalized eigenvector of (7) as u satisfying
u⊤WSu = λ,u⊤Lu = 1, then we obtain c = u + 0.5γ1.

To show that the vectors c derived by the generalized
eigenvectors u are valid critical points of (3), we have to
demonstrate that (i) c should satisfy c⊤Lc = 1, which is
guaranteed by u⊤Lu = 1 as 1 is in the kernel of L, and (ii)
c should lead to an equality between λ defined in (5) and
the generalized eigenvalue. This can be ensured by having
ν = −κ(b21 + b22)

−1. If we equate the way to compute the
generalized eigenvalue (left) and λ (right)

u⊤WSu
u⊤Lu

=
4b21b2 + 4b1b

2
2 + 4νb21b

2
2

a(b21 + b22)
, (8)

and plug in c = u + 0.5γ1, then by some manipulations, we
obtain ν = −κ(b21 + b22)

−1. The resulting vectors c are thus
the critical points of (4).

To retrieve the continuous indicator vector c, we first have
to solve the GEVP (7). However, as the Laplacian, by its mere
definition, has generally rank N−1, this GEVP has an infinite
eigenvalue [20]. Since we only care about the finite ones, we
can simply reshape the size of the singular value matrix of L,
ΣL, to (N − 1)× (N − 1) by eliminating the zero eigenvalue
and then constructing Ã = (ULΣ

−1/2
L)⊤WS(ULΣ

−1/2
L). Here,

UL collects the appropriate N − 1 eigenvectors of L. The
generalized eigenvectors are then constructed as

U = ULΣ
−1/2
L UÃ, (9)

where UÃ denotes the eigenvector matrix of Ã. Note that now
we obtain a matrix U with size N × (N − 1) and it can be
easily seen that U satisfies

U⊤WSU = Λ, U⊤LU = I,

where Λ ∈ R(N−1)×(N−1) collects the finite generalized
eigenvalues on its diagonal.

Although to compute c we need to know γ (which depends
on c), we show that this does not pose a problem for finding
the partitions. But as we have discussed, the cost function
has multiple critical points related to multiple eigenvectors.
To determine which one to pick, we introduce the next result.

Proposition 2. The cost function can be upper-bounded by

J(c) <
8

λ
. (10)

Proof. We have

λ =
4b1b2(b1 + b2 + νb1b2)

a(b21 + b22)
=

4(b1 + b2)
2

J(c)(b21 + b22)
+

4ν21b
2
2

b21 + b22
.

With the Cauchy–Schwarz inequality, we can obtain

λ ≤ 8

J(c)
− 4κ

(b1b2
b21 + b22

)2
<

8

J(c)
,

since the second term is a positive value. By exchanging the
position of λ and J(c), the upper bound (10) can be obtained.

Therefore, the generalized eigenvector corresponding to the
largest eigenvalue should be chosen as the continuous indicator
vector as it tends to produce the smallest cost function by
minimizing the upper bound on J(c). After this selection,
similarly to classical graph partitioning, a binary solution,
c∗ ∈ {0, 1}N , can be retrieved by thresholding the continuous
solution through a function value sweep finding the best
function evaluation. Since 0.5γ1 is only an offset, working on
u produces the same clusters as working on c. Thus, there is
no need to compute γ. From now on, we will not differentiate
u and c.

C. Static Multi-way Partition

Similar to classical graph partitioning, for the multi-way
partitioning problem, we follow a heuristic approach and
select the K generalized eigenvectors related to the K largest
eigenvalues. One can stack these K vectors into a matrix UK ,
then treat each row of UK as coordinates and finally apply
K-means to obtain a label for each node.

IV. ADAPTIVE PARTITIONING

We proceed to derive the adaptive partitioning for when the
graph is dynamic. We formulate the variations in the graph
topology as perturbations to the graph matrices. The main idea
is to use the current eigenpair to approximate the new ones
for the perturbed graph and update accordingly the clusters.
Thus, although the method starts from the exact eigenpairs,
during the update procedure, there is no need to compute the
eigenpairs from scratch, reducing the computational load.

Assume the m-th eigenvector um and its related eigenvalue
λm are known and they are derived from the following GEVP

WSum = λmLum. (11)

Further consider the perturbed eigensystem [13]

(WS +∆WS)(um +∆um)

=(λm +∆λm)(L +∆L)(um +∆um). (12)

Now, to update the m-th eigenpair we need to derive ∆um

and ∆λm given ∆WS and ∆L. ∆λm can be given by

∆λm =
u⊤
m(∆WS − λm∆L)(um +∆um)

u⊤
m(L +∆L)(um +∆um)

(13)

through expanding (12). To find ∆um, we need to solve the
linear system resulting from expanding (12), i.e.,

(WS +∆WS − (λm +∆λm)(L +∆L))∆um

=(∆λmL + λm∆L +∆λm∆L −∆WS)um (14)

which can be written as K̃∆um = h̃.
Since K̃ is a singular matrix, which can be seen by rear-

ranging (12) as K̃(um + ∆um) = 0, a unique ∆um cannot
be determined. We assume here that the perturbations of the
matrices are small enough such that the approximation of the
generalized eigenvectors and eigenvalues hold. This provides
us with the intuition that the ∆um must be small in the l2-
norm sense as well. Therefore, we can add the norm of the
perturbation as a regularization term when solving the related

694

Fig. 1: Red and blue: clusters. U1, U2, B1, B2: 4 blocks; U (circle), B (cross): two types of nodes. Left: Cost function value for generalized
eigenvectors (eigenvalues from large to small). Middle: Bisection of the proposed method. Right: Bisection of spectral clustering.

least squares problem. As a result, ∆um can be retrieved by
solving the following optimization problem:

min
∆um

||K̃∆um − h̃||22 + µ||∆um||22, (15)

where µ > 0 is a regularization parameter. This is the well-
known Tikhonov regularization problem, which can be solved
efficiently using conjugate gradient descent (CGD) with imax

iterations [18].
So far, we explained the different steps of the eigenpair

updating method. To perform K-way partitioning, the first K
eigenvectors are required. We initialize the method with the
eigenpairs computed by the GEVP. When the graph changes,
we first set ∆um = 0 and use (13) to obtain the first approxi-
mation of ∆λm with O(|E|) operations and then we solve (15)
based on ∆λm to obtain the first approximation of ∆um

with O(|E|) operations as well. We perform these two steps
alternatively with I iterations to refine the approximations for
each eigenpair. However, this method is incapable of ensuring
that the tracked K eigenvectors are the ones related to the
K largest eigenvalues. To address this issue, one can choose
to track M ≥ K eigenvectors. And after each update, one
reorders the eigenvalues and the eigenvectors descendingly as
the first K largest eigenvectors are sufficient and required to
produce the desired clusters. When L is a sparse matrix, the
overall complexity of the update is O(M × I × imax × |E|).

V. NUMERICAL RESULTS

A. Static Case

We consider a graph generated using a stochastic block
model with 4 blocks, U1, U2, B1, and B2, to be bisected [15].
Each block has 10 nodes. The intra-block edge probability is
0.9. The edge probability between U1-U2 and B1-B2 is 0.2.
The edge probability between U1-B1 and U2-B2 is 0.1. The
goal is to cluster U1-B1 and U2-B2.

We consider the binary adjacency matrix as W, and L as
its combinatorial Laplacian. The (continuous) indicator vectors
are derived by the procedure discussed in Section III-B. In the
implementation, we construct u by computing the eigenvectors
of L and Ã related to eigenvalues larger than 10−6. The cost
function values obtained by the thresholded columns of U
are shown in Fig. 1 (left), where the gap is because the cost
is infinity when being evaluated by some of the discretized

columns. The bisection result is shown in Fig. 1 (middle). As
a comparison, spectral clustering (SC) is also performed as in
[22] which arrives at different clusters as illustrated in Fig. 1
(right).

When using spectral clustering, we intrinsically minimize a
cost function such as MinMaxCut with

∑
i∈Cm,j∈Cm

wi,j in the
denominator, i.e., the cluster density is color-independent. But
our proposed cost function only considers the edges between
a U block and a B block. Consequently, the dense intra-
block edges and edges between U1-U2/B1-B2 have no effect
when producing clusters, leading to the desirable result. To
summarize, the results in this section validate our choice of
eigenvectors, and the solution to generate clusters.

B. Adaptive Case

The graph considered here is the model of a simulated
cellular network. The cellular network has 37 base stations
and 3 hotspots with a Gaussian shape. Each hotspot has 400
users. The base stations are initially uniformly distributed with
inter site distance (ISD) 1Km. The heterogeneity in the layout
of the base stations is achieved by randomly moving each base
station to another position within a 400 m × 400 m square
centered around its original position. The layout of the cellular
network is shown in Fig. 2 (Left). We assign graph weights as
wi,j = 1/di,j , where di,j is the Euclidean distance between
nodes i and j.

As connection is assumed to be local, we only preserve
edges having weights larger than a threshold ϵ. For different
types of edges, we set two thresholds.

• For the edges between different base stations1:

ϵ = 1/(1.1× ISD).

• For the edges between users and base stations:

ϵ = 1/(1.1× rc),

with rc = ISD/
√
3 the cell radius.

In the simulations, the regularization parameter µ is 10−4,
the number of alternating steps I is 2, the maximum number
of iterations in CGD imax is 6

√
N , and the number of

tracked components M is 4. The graph dynamics result from
randomly changing each user’s position within a 200 m × 200

1The factor 1.1 is used to account for the network heterogeneity.

695

Fig. 2: Left: Cellular network layout. Middle: Cost function. Right: Time consumption of each update. [by EVD]: using (9); [by Update]:
using the proposed method; [no Update]: using the initial clusters.

m square centered around its previous position. Within each
perturbation, 20 users change their positions. Given that there
are 1200 users in the network, the change in the graph caused
by moving users can be modeled as a series of perturbations
of the adjacency matrix {∆Wt}t=1,2,...,60. We update the
eigenvectors and the clusters after each perturbation based
on the estimates after the previous perturbation (initialized
by the exact ones). We illustrate the cost function value and
the computation time at each time instant in Fig. 2 (middle)
and in Fig. 2 (right), respectively, where we can see how the
update procedure performs when the network changes over
time. As we can observe, the cost function from the proposed
method (Update) is almost the same as solving (11) exactly
(EVD), indicating a similarity in the determined clusters, but
with much less processing time.

VI. CONCLUSIONS

We studied the partitioning problem for dynamic bi-colored
graphs which contain two types of vertices. In the proposed
cost function, the color dependency was considered. We first
detailed the relaxation of the bisection problem and propose
a solution based on the generalized eigenvalue decomposi-
tion. This method is subsequently extended to a multi-way
partitioning approach. After that, we introduced an adaptive
partitioning method for dynamic graphs based on matrix per-
turbation theory and incremental clustering principles. Finally,
we validated the devised methods over synthetic bi-colored
graphs.

REFERENCES

[1] S. Bassoy, H. Farooq, M. A. Imran, and A. Imran, “Coordinated multi-
point clustering schemes: A survey,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 2, pp. 743–764, 2017.

[2] S. Bassoy, M. Jaber, M. A. Imran, and P. Xiao, “Load aware self-
organising user-centric dynamic comp clustering for 5g networks,” IEEE
Access, vol. 4, pp. 2895–2906, 2016.

[3] T. Biermann, L. Scalia, C. Choi, H. Karl, and W. Kellerer, “Comp
clustering and backhaul limitations in cooperative cellular mobile access
networks,” Pervasive and Mobile Computing, vol. 8, no. 5, pp. 662–681,
2012.

[4] P. Desikan, N. Pathak, J. Srivastava, and V. Kumar, “Incremental page
rank computation on evolving graphs,” in Special interest tracks and
posters of the 14th International Conference on World Wide Web, 2005,
pp. 1094–1095.

[5] M. Gu, H. Zha, C. Ding, X. He, H. Simon, and J. Xia, “Spectral
relaxation models and structure analysis for k-way graph clustering and
bi-clustering,” 2001.

[6] M. Hajjar, G. Aldabbagh, and N. Dimitriou, “Using clustering tech-
niques to improve capacity of lte networks,” in 2015 21st Asia-Pacific
Conference on Communications (APCC). IEEE, 2015, pp. 68–73.

[7] I. Jabłoński, “Graph signal processing in applications to sensor networks,
smart grids, and smart cities,” IEEE Sensors Journal, vol. 17, no. 23,
pp. 7659–7666, 2017.

[8] A. Lisser and F. Rendl, “Graph partitioning using linear and semidefinite
programming,” Mathematical Programming, vol. 95, no. 1, pp. 91–101,
2003.

[9] J.-M. Moon and D.-H. Cho, “Inter-cluster interference management
based on cell-clustering in network mimo systems,” in 2011 IEEE 73rd
Vehicular Technology Conference (VTC Spring). IEEE, 2011, pp. 1–6.

[10] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” Advances in neural information processing systems, vol. 14,
pp. 849–856, 2001.

[11] C. T. Ng and H. Huang, “Linear precoding in cooperative mimo cellular
networks with limited coordination clusters,” IEEE Journal on Selected
Areas in communications, vol. 28, no. 9, pp. 1446–1454, 2010.

[12] F. Nie, C. Ding, D. Luo, and H. Huang, “Improved minmax cut
graph clustering with nonnegative relaxation,” in Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases.
Springer, 2010, pp. 451–466.

[13] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang, “Incremental spectral
clustering by efficiently updating the eigen-system,” Pattern Recognition,
vol. 43, no. 1, pp. 113–127, 2010.

[14] K. Park, K. Lee, S. Park, and H. Lee, “Telecommunication node clus-
tering with node compatibility and network survivability requirements,”
Management Science, vol. 46, no. 3, pp. 363–374, 2000.

[15] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond, “GSPBOX: A toolbox for signal
processing on graphs,” ArXiv e-prints, Aug. 2014.

[16] M. A. Russell, Mining the social web: Analyzing data from Facebook,
Twitter, LinkedIn, and other social media sites. ” O’Reilly Media, Inc.”,
2011.

[17] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[18] J. R. Shewchuk et al., “An introduction to the conjugate gradient method

without the agonizing pain,” 1994.
[19] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE

Transactions on pattern analysis and machine intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[20] G. W. Stewart, “Matrix perturbation theory,” 1990.
[21] N. Tremblay and A. Loukas, “Approximating spectral clustering via sam-

pling: a review,” Sampling Techniques for Supervised or Unsupervised
Tasks, pp. 129–183, 2020.

[22] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[23] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions
on neural networks and learning systems, 2020.

[24] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,”
Annals of Data Science, vol. 2, no. 2, pp. 165–193, 2015.

[25] J. Zhao and Z. Lei, “Clustering methods for base station cooperation,”
in 2012 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2012, pp. 946–951.

[26] J. Zhao, T. Q. Quek, and Z. Lei, “Coordinated multipoint transmission
with limited backhaul data transfer,” IEEE Transactions on Wireless
Communications, vol. 12, no. 6, pp. 2762–2775, 2013.

696

