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Abstract—This paper proposes a wireless, goal-oriented, multi-
user communication system assisted by edge-computing, within
the general framework of Edge Machine Learning (EML).
Specifically, we consider a set of mobile devices that, exploiting
convolutional encoders (CE), namely the encoder part of the
convolutional auto-encoders (CAE), send compressed data units
to an edge server (ES) that performs a specific learning task,
such as image classification. The training of both the CEs and
the ES classification networks is performed in a off-line fashion,
employing a cross-entropy loss, regularized by the mean squared
error of the CAE expanded output. Then, exploiting such goal-
oriented architecture, and employing a Lyapunov optimization
framework, we considered the joint management of computation
and transmission resources for the overall system. In partic-
ular, we considered a Multi-User Minimum Energy Resource
Allocation Strategy (mu-MERAS), which provides the optimal
resource allocation for both the devices and the ES, in a energy-
efficient perspective. Simulation results highlight a classical EML
trade-off between energy, latency, and accuracy, as well as the
effectiveness of the proposed approach to adaptively manage
resources according to wireless channels conditions, computing
requests, and classification reliability.

Index Terms—Goal-Oriented communications, auto-encoder,
Lyapunov Optimization, Edge Machine Learning

I. INTRODUCTION

The deployment of 6G is going to radically change the
concept of mobile networks, from a pure communication
perspective to a key enabler of pervasive and “zero-latency”
artificial intelligence controlling several new services, among
which Industry 4.0, autonomous driving, augmented reality,
and Internet of Things [1]. As such, 6G requires the design
of a holistic system in which communication, computation,
learning, and control are jointly orchestrated to achieve new
target levels of reliability, energy efficiency, and sustainability.
To this aim, edge machine learning (EML) is becoming a hot
research topic [2]–[5], enabling mobile devices (MDs) to op-
portunistically offload learning tasks to ESs. The crux of EML
is a joint management of computational and communication
resources at the wireless edge, which can optimize a quantity
among energy consumption, latency, or learning accuracy,
while guaranteeing specific application constraints on the
others [5]. In this framework, communications are typically
goal-oriented, i.e., take place to fulfil the goal dictated by
the specific application, and must be designed to transmit the

This work was supported by MIUR under the PRIN Liquid Edge Contract.

minimum information that is necessary to perform the learning
task with target levels of quality of service. This requires the
development of new communication schemes that can move
beyond the classical Shannon paradigm, whose management
is a challenging research topic [6].

Related works. Within the EML literature, the authors in
[5] describe an offloading strategy that allows to save trans-
mission resources by dynamically allocating the quantization
bits used by MDs to transmit their data to the ES, for a specific
learning task. More recently, compression at the MD has been
proposed by means of the Information Bottleneck (IB) princi-
ple [7], which, however, admits a closed form solution only in
special cases (e.g., Gaussian IB) and it is not suitable for those
scenarios (e.g., image classification) where a closed-form for
the stochastic compression does not exist. In this situation, the
Variational-IB is more appealing, as in [8], which proposes
a goal-oriented compression (GOC) framework. Also, goal-
oriented semantic communications were recently proposed in
[9], [10]. However, none of these works considered dynamical
resources allocation strategies for goal-oriented communica-
tions.

Our contributions. we propose a multi-user, goal-oriented
communication system where multiple MDs exploit banks
of Convolutional-Encoders (CEs) (i.e., the encoding section
of Convolutional Auto-Encoders) to (dynamically) compress
data-units (DUs) that are offloaded to an ES, which has to
perform multiple, user-independent, learning tasks, such as
image classification, by exploiting banks of convolutional neu-
ral networks (CNNs) that are matched to the CEs. Exploiting
this dynamical source compression architecture and Lyapunov
optimization, we design a multi-user Minimum Energy Re-
source Allocation Strategy (mu-MERAS), whose aim is to
jointly minimize the total energy consumption of MDs and
ES, under latency and accuracy guarantees. Simulation results
highlight the effectiveness of the proposed approach, as well as
the resulting trade-offs between energy, latency, and accuracy.

II. SYSTEM MODEL AND TRAINING PROCEDURE

The system scenario, reported in fig.1, considers K MDs
that wirelessly offload to an ES generic, possibly different,
learning tasks. Before transmission, the DUs are dynamically
compressed by a bank of tunable CEs, which implement a
goal-oriented data-size reduction such that each MD transmits
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Fig. 1. System Model

the lowest possible amount of data, while ensuring a prescribed
learning performance. This idea is formalized in the IB prin-
ciple, which maps the above requirements into an Information
Theoretic perspective [11]. However, due the intractability
issues of the statistical quantities (e.g. the Mutual Information)
that make the Bottleneck solvable in a closed form only on
some special cases [7], some practical approximation should
be considered.

A. Compression-oriented training procedure

The joint training of CE and CNN, which is fed by the
compressed representation, could be based on the minimiza-
tion of the categorical cross-entropy [12] between the ground
truth Y and the prediction Ŷ , provided by the CE-CNN clas-
sifier. Despite its simplicity, the effectiveness of the proposed
training finds its roots in [13], which demonstrates that Cross
Entropy can be viewed as a proxy for the mutual information
involved in the IB principle. Herein, we improve the tuning
capability of the resource management, by modifying the CE-
CNNs classification in two ways:

• inspired by [14], we penalize the cross entropy training
loss by the Mean Squared Error (MSE) between the
original signal X (e.g., the image to be classified) and
the corresponding (re-) expanded CAE output X̂ .

• in the bank of parallel encoders, we consider both short
and deep CEs, which are characterized by different com-
plexity (i.e., energy, latency) versus accuracy tradeoffs.

Summarising, the learning procedure reads as

min
θ, ϕ

1

Nt

Nt∑
n=1

EL(Yn, Ŷn, ϕ, θ) + λLmse(Xn, X̂n, θ), (1)

where θ and ϕ represent the MD-CAE and the ES-CNN
parameters, respectively, EL is the categorical cross Entropy
Loss, and Lmse is the MSE loss, weighted by the regulariza-
tion parameter λ. Thus, considering for all the users the same
image classification task, after jointly training the CE-CNN
structure, we selected by cross-validation the best λ, as the
one that maximizes the classification accuracy in the test-set.

B. Communication-oriented compression

After the CE step, each MD employs also a further com-
pression stage, which allows to further zip the (pseudo) DUs at
the encoder output, thus resulting in a considerable saving of
transmission resources. Obviously, this implies an additional

(energy) computational cost for both the MDs compressions
and the ES decompression, which is necessary at the ES for
a reliable (CE-based) classification. Specifically, we focused
on JPEG because it is efficiently supported by most of the
available programming languages and, despite its (slightly)
lossy nature, we verified it does not affect considerably the
ultimate learning performances.

C. Latency Model
The latency of the system is captured by the congestion

of some specific physical queues [15]. The system evolves in
(discretized) time-slots indexed by t, with a fixed duration τ .
For each user in the system, we define two kinds of queues:

1) MD compression and transmission queues, which collect
the DUs (e.g., images) that are waiting to be compressed
and transmitted to the ES for inference processing.

2) An ES computation queue for each possible compression
factor employable by each MD.

We also reasonably assume that:
i) each DU at the MD queue, has to be (specifically)

compressed and transmitted during the same time-slot.

ii) while the device transmits some DUs, it may also simul-
taneously compress other DUs, which (necessarily) have
to be successively transmitted within the same time-slot.

The number of DUs that the k-th device could transmit during
the t-th time-slot is expressed by

N tx
k (t) =

⌊
τRk(t)

M(ρk(t))N(ρk(t))

⌋
, (2)

where Rk(t) and ρk(t) are the specifically chosen transmission
rate and compression factor, respectively; M(ρk(t)) is the DU
size associated with a specific compression factor ρk(t) ∈ Sk,
and N(ρk(t)) are the corresponding bits used (on average) to
encode a pixel of the (JPEG-compressed) CE output.

The number of DUs that a MD could (computationally)
process during the t-th time slot is given by

N c
k(t) =

⌊
τfd

k (t)Jd(ρk(t))
⌋
, (3)

where Jd(ρk(t)) denotes the number of DUs compressed in a
clock cycle, which depends on the compression factor ρk(t),
while fd

k (t) is the MD clock frequency selected for the t-th
time slot. Thus, by assumption i), the total number of DUs
that can be offloaded by the k-th MD during the t-th slot is

NMD
k (t) = min(N tx

k (t), N c
k(t)). (4)
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Consequently, the queue QMD
k (t) at the k-th MD evolves as

QMD
k (t+ 1) = max(0, QMD

k (t)−NMD
k (t)) +Ak(t), (5)

where Ak(t) models the DUs arrival process, whose statistical
knowledge is not required in Lyapunov optimization [15].

For simpler mathematical tractability, we assume the ES
manages Lk queues for each MD, each one associated to one
of the compression factors available in Sk. The evolution of
the i-th queue, for the k-th MD, is described by

QES
ki (t+ 1) = max(0, QES

ki (t)−NES
ki (t))

+min(NMD
k (t), QMD

k (t))1i{ρk(t)},
(6)

where 1i{ρk(t)} denotes the indicator function 1{ρk(t) =
ski(t)}, which models the arrival of new DUs in the i-th
queue only if the MD chooses the i-th compression factor,
while NES

ki (t) is the number of processed DUs in the t-th
slot, expressed by

NES
ki (t) = ⌊τfs

ki(t)J
s
ki(t)⌋ . (7)

The quantity Js
ki in (7) is a conversion factor to map the num-

ber of DUs, transmitted by the MD, in the equivalent number
of clock cycles requested by the ES for their processing.

To set-up a latency constraint for each MD, we define an
overall queue, which takes into account the overall (MD plus
ES) computational load. Since the ES can perform parallel
processing of DUs hosted in different queues, a (worst) latency
constraint for the k-th MD should consider the longest ES
queue, as highlighted by

Qtot
k (t) = QMD

k (t) + max
i

{QES
ki (t)}. (8)

However, to respect an average latency constraint, as we do
in the following, it makes more sense to consider the average
length of the parallel queues, which reads as:

Qtot
k (t) = QMD

k (t) +

Lk∑
i=1

piQ
ES
ki (t), (9)

where pi is the probability to employ the i-th compression
factor, which can be estimated by an online sample mean.
By the Little’s law [16], imposing an upper-bound Qavg

k

on the long-term average of (9), is equivalent to impose a
constraint on the average delay Davg

k = Qavg
k /Ak, where

Ak = E
{

Ak(t)
τ

}
is the average data arrival rate at MD k.

D. Energy model

Assuming a capacity-achieving wireless system, the trans-
mission energy Etx

k (t) associated to the k-th device can be
inferred inverting the Shannon capacity formula [17], i.e.,

Etx
k (t) = τ

BkN0

hk(t)2

(
e

(
Rk(t)ln(2)

Bk

)
− 1

)
. (10)

For the computations, we employ the same energy model for
both the ES and the MD, expressed by [18]

Ecomp
k (t) = τκfd

k (t)
3, Es(t) = τκfc(t)

3, (11)

where the constant κ represents the effective switched capac-
itance of the processor [18]. For simplicity we assume the
same κ for all the devices and the server, although this is
not strictly necessary. Finally, the overall energy spent by the
system during the t-th time-slot is expressed as:

Etot
k (t) =

K∑
k=1

[
Ecomp

k (t) + Etx
k (t)

]
+ Es(t). (12)

E. Accuracy model

The resource optimization strategy must be designed to
satisfy inference accuracy constraints. To this aim. we resort
to a model-based approach, where the accuracy can be cast in
the optimization problem as a (discrete) function of the com-
pression factor, by employing a look up table, say, G(ρk(t)),
which stores in each entry the accuracy associated with each
specific compression factor (cf., Fig.2).

III. DYNAMIC RESOURCE ALLOCATION VIA LYAPUNOV
STOCHASTIC OPTIMIZATION

Exploiting the system model described in Section II, we
propose herein a Multi-User Minimum Energy Resource Al-
location Strategy (mu-MERAS). To this aim, we define the
following long-term optimization problem

min
Φ(t)

lim
T→∞

1

T

T∑
t=1

K∑
k=1

E{Etot
k (t)}

s.t. (a) lim
T→∞

1

T

T∑
t=1

E{Qtot
k (t)} ≤ Qavg

k

(b) lim
T→∞

1

T

T∑
t=1

E{G(ρk(t)} ≥ Gavg
k

(c) 0 ≤ Rk(t) ≤ Rmax
k

(d) fc(t) ∈ Fs, fd
k (t) ∈ Fd

k , ρk(t) ∈ Sk

(e)

K∑
k=1

Lk∑
i=1

f c
ki(t) ≤ fc(t), f c

ki(t) ≥ 0,

(13)
where the long term system energy consumption is
minimized under long-term latency and accuracy con-
straints (a)-(b). The other constraints (c)-(f) define the
feasible set for the variables to be dynamically al-
located, which are collected in the vector Φ(t) =
[{Rk(t)}Kk=1, {ρk(t)}Kk=1, {{f c

ki(t)}
Lk
i=1}Kk=1, fc(t)]. Problem

(13) is complicated to solve, since the expectation is taken with
respect to wireless channels and data arrivals, whose statistics
are supposed to be unknown a priori. Thus, in the sequel,
we will exploit Lyapunov stochastic optimization [15], which
enables to transform the long-term optimization in (13) into
a pure stability problem, which can be solved in a per-slot
fashion. Then, to deal with the long-term constraints (a)-(b),
we define for each MD the virtual queues Zk(t) and Yk(t),
which evolve as:

Zk(t+ 1) = max(0, Zk(t) + µk(Qk(t+ 1)−Qavg
k ))

Yk(t+ 1) = max(0, Yk(t) + νk(G
avg
k −G(ρk(t))))

(14)
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where the parameters µk and νk are positive step-sizes, used
to control the convergence speed of the algorithm. Now,
introducing the Lyapunov Function

L(t) =
1

2

K∑
k=1

[Yk(t)
2 + Zk(t)

2], (15)

letting Θ(t) = [{Zk(t)}Kk=1, {Yk(t)}Kk=1], and defining
∆(t) = E{L(t + 1) − L(t)|Θ(t)}, we obtain the following
Lyapunov Drift plus penalty function

∆p(t) = ∆(t) + V E{Etot(t)|Θ(t)}. (16)

The minimization of (16) implies the optimization of the
objective function in (13) (e.g., energy), while respecting
the long-term constraints, whose violation is modelled by
the congestion of the virtual and physical queues [15]. The
parameter V in (16) allows to explore the trade-off between
the objective function minimization and the margin on the
constraints in (13), giving more or less importance to the term
we want to optimize. Interestingly, the minimization of (16)
can be decoupled over the ES and MD optimization variables
(details are omitted due to lack of space). The results of the
two separate optimization steps are given in the following.

A. MDs resource allocation

Since the MDs do not cooperate (or interfere), we can in-
dependently optimize the Lyapunov drift (16) for each device.
Thus, omitting the temporal index t for notation simplicity,
for a fixed compression factor ρki, the optimal rate can be
computed in closed-form by

R∗
k(ρki, f

d
k ) =

[
Bk

ln(2)
ln

(
QTX

ki h2
k

W (ρki)V ln(2)N0

)]Rmax
k

0

×

× 1(QTX
ki (t) > 0) (17)

where W (ρki) = M(ρki)N(ρki) and

QTX
ki = (Lk + 1)µ2

k(Q
MD
k −QES

ki ) + µkZk.

Since the compression factors ρk and the frequencies fd
k as-

sumes values on discrete sets with low cardinality, the overall
problem can be solved by an exhaustive search, computing
(17) for any pair (fd

ki, ρki), and then selecting the triple
T ∗
k = (R∗

ki, f
d
ki, ρki) that minimizes the Lyapunov drift (16).

B. ES resource allocation

At the ES, we get the following optimization problem:

min
Φs

−
K∑

k=1

Lk∑
i=1

τQS
kiJ

s
kif

c
ki + τV κ(fc)

3

s.t. 0 ≤ f c
ki ≤ min

(
fc,

QES
ki

τJs
ki

)
, fc ∈ Fs (18)

K∑
k=1

L∑
i=1

f c
ki ≤ fc,

Fig. 2. Accuracy vs Compression Factor without Communication section

TABLE I
CHANNEL PARAMETERS

Dmax(m) B(kHz) f0(GHz) σ2
0

500 2500 9 2.72× 10−14

where Φs = [{{f c
ki}

Lk
i=1}Kk=1, fc] and QS

ki = (Lk+1)µ2
kQ

ES
ki +

µkZk, and whose objective is to select the best server com-
putation frequency fc, and optimally partition it among the
different queues. For any fixed server frequency fc, (18)
becomes the classical (fractional) knapsack problem, which
can be easily solved by a linear algorithm [19] and whose
solution gives the optimal division of fc. Thus, solving the
problem for each possible clock frequency fc, we select the
best ES resource allocation, by choosing f∗

c (and its associated
partitioning) that minimizes the objective function in (16).

IV. SIMULATION RESULTS

We tested the proposed approach by simulations on the
GTSRB dataset [20], considering images of 256× 256 pixels.
All the results are obtained using a bank of pre-trained CE-
CNN classifiers, one for each compression factor, picking
the λs in (1), with the best classification accuracy. To assess
the effectiveness of our goal-oriented communication scheme,
we compared the performance obtained employing short- and
deep-CE before the classification CNN, with those obtained by
resizing the pseudo-images by a trivial down-sampling process
with anti-aliasing. As expected, Fig.2 shows that goal-oriented
CE compression schemes reach a greater accuracy, motivating
their employment in our framework. However, we underline
that the results in Fig.2 do not consider the wireless communi-
cation aspects, with the associated energy/latency issues. Thus,
it is not possible to exclude that in some cases it could make
sense to use also pure down-sampling, thus granting further
flexibility to the proposed resource management.

We considered a fast fading channel, characterized by the
Jakes-Clark autocorrelation function [21], with an average
path-loss computed according to the ABG model [22]. Al-
though this is not necessary, we used the same channel
(statistical) conditions for all the MDs. In all the simulations
we have K = 5 MD, each of them equipped with a clock in
Fd = {0.1, 0.2, . . . , 0.9, 1} × 1.4 GHz, while the ES clock
can choose in Fs = {0.1, 0.2, . . . , 0.9, 1] ×4.5 GHz. Both
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Fig. 3. MD average Energy latency trade-off. CE (solid) vs down-sampling.

Fig. 4. ES Energy latency trade-off.

MDs and ES energy consumption have been modelled by a
switched capacitance κ = 1.097× 10−27( s

cycles )
3.

We tested the mu-MERAS optimization strategy in the
channel scenario reported in Tab.I. In this situation the MDs
experience a large channel attenuation, thus resulting in a
considerable transmission energy/latency. Fig.3 witnesses how
the employment of the Convolutional Encoder compression
leads to a lower energy consumption from the MDs perspec-
tive. Indeed, from Fig.2, we note that the CEs get acceptable
accuracy values also with the highest compression factor, thus
allowing to satisfy the accuracy and latency constraints by
transmitting small Data Units, i.e., choosing ρ ∈ {32, 64}.
On the other hand, the employment of a downsampling-based
compression technique, forces the resource allocation strategy
to choose lower compression factors, with a consequent higher
transmission cost.

Looking at Fig.4, we note that the choice of higher com-
pression factors, as it is possible when employing the CEs, it
is also advantageous from the ES perspective. Indeed, smaller
DUs require lower computational resources to get classified,
thus resulting in a lower energy consumption also from the
ES perspective.

V. CONCLUSION AND FUTURE DIRECTIONS

We proposed a classification-oriented communication archi-
tecture, based on CEs and CNNs, together with a resource

management policy, that proved to be effective and flexible,
to trade energy for latency and classification accuracy, in a
multi-user scenario served by the same edge server. Future
research directions may include the use of multiple servers,
cooperative tasks such as in federated learning architectures,
as well as further refining of the proposed approach, which
may include partial-offloading of the computational task as
well as user-focused or server focused energy management.
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