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Abstract—The emergence of cellular Internet of Things (IoT)
standards such as NB-IoT brings novel opportunities for low-
cost wide-area IoT applications. Augmenting massive IoT de-
ployments with Machine Learning (ML) algorithms deployed at
the edge enables design and implementation of a novel intelligent
IoT services. In this paper, we present an architectural outlook
and an overview of our recent activities that target integration of
ML modules into the cellular IoT architecture. The three-layer
architecture considered in this paper embeds ML modules at the
edge devices (ML-EDGE), within the core network (ML-FOG)
and at the cloud servers (ML-CLOUD), thus balancing between
the system response time and accuracy. We discuss alignment
of the proposed architecture with ongoing trends in 3GPP
architecture evolution. We design, integrate and demonstrate
edge ML use cases relying on our real-world deployment of about
150 static and mobile nodes integrated into the NB-IoT network.

Index Terms—NB-IoT, Machine Learning, Edge Computing

I. INTRODUCTION

Billions of cellular Internet of Things (IoT) devices are
being connected world-wide, providing wide area wireless
sensing infrastructure. 3GPP NarrowBand-IoT (NB-IoT) rep-
resents the most popular solution currently deployed by mobile
operators around the world [1]. NB-IoT provides a radio
interface able to connect tens of thousands of low-cost NB-
IoT devices per macro-cell. As the trends of integration of
Machine Learning (ML) with IoT are gaining momentum [2],
[3], the system-level solution for ML integration in 3GPP-
based cellular IoT networks becomes highly relevant.

Deploying ML services within 3GPP network is an emerg-
ing topic in 3GPP standardization [4]. In 3GPP Release 16/17
of standards, a novel 5G core network (CN) Network Data
Analytics Function (NWDAF) is introduced [5] to support in-
telligent network automation. In Rel. 16, only slice automation
and slice load analytics is considered, while Rel. 17 extends
the work towards user equipment (UE)-related analytics. Cur-
rently, 3GPP work is restricted to services offered to mobile
operators aiming at provision of data analytics and automated
network operation and management.

The work is supported in part by European Commission’s Horizon 2020
Research and Innovation Programme, Grants No. 856967, 833828 and 871518.

In this work, we present our work that integrates ML
services into a 3GPP NB-IoT network architecture, following
an established three-level edge-fog-cloud approach [6]. The
critical aspects are: i) The design of edge ML modules for
resource-constrained NB-IoT devices [7], and ii) The design of
an orchestration mechanism that trades-off resource limitations
and system response [8]. The proposed ML-augmented NB-
IoT service supports applications such as anomaly detection,
identification of malfunctioning devices, security threat detec-
tion, and others. The complexity of ML modules is matched to
different deployment levels, thus balancing between the NB-
IoT service response and accuracy.

This work extends and generalises our recent work on NB-
IoT-based anomaly detection [9]. We first present two custom-
designed NB-IoT device platforms for indoor and outdoor use
cases suitable for collection of both application data (e.g., raw
data from on-board sensors) and UE-specific data (e.g., on
device energy consumption and radio channel conditions). We
further investigate different edge ML architectures suitable
for ML-based NB-IoT applications. Thus our work builds
upon recent 3GPP efforts, while focuseing on NB-IoT in-
network data analytics, supported by real-world deployment
and demonstration study.

The paper is organized as follows. In Sec. II, we present
technical background and review the related work on edge ML
for IoT. The ML-augmented 3GPP NB-IoT system architecture
is presented in Sec. III. Sec. IV presents in detail ML-EDGE
module and presents selected applications of edge ML in
3GPP NB-IoT. In Sec. V, we describe system integration
and deployment, and provide example results from real-world
experiments. The paper is concluded in Sec. VI.

II. BACKGROUND

A. 3GPP NB-IoT System Architecture

NB-IoT is a recently introduced Cellular IoT technology
that can be seamlessly integrated into an existing 3GPP
architecture [1]. NB-IoT may coexists in the radio access
network with both 3GPP 4G LTE and 5G NR, while using the
same evolved packet core (EPC). NB-IoT user equipment (UE)
connects to the network via eNodeB (eNB) within Evolved
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Fig. 1: ML-augmented 3GPP NB-IoT architecture.

Universal Terrestrial Radio Access Network (E-UTRAN). eNB
provides user-plane and control-plane information transfer to
the main EPC element, CIoT Serving Gateway Node (C-SGN),
which embodies both Mobility Management Entity (MME)
and Serving Gateway (SGW) functions. User-plane data are
forwarded via Packet Gateway (PGW) to the mobile/operator
IoT platform, or to the external network servers (Fig. 1).

Extension of 3GPP architecture to support data analytics
services is under way as part of Rel. 16 and 17 through
the introduction of NWDAF and management data analytics
function (MDAF) in 5GCN service-based architecture (SBA).
NWDAF/MDAF are able to support data analytics services or
enhance other 5GCN network functions with various statistics
and predictions [10]. The primary goal of NWDAF/MDAF
introduction is to enable future 5G network automation and
enhance 5G network operation, administration and manage-
ment (OAM). Further steps in 5G data analytics architecture
evolution is to extend its reach from 5GCN towards 5G radio
access network (RAN) [10]. These steps are already taken
as part of the Open RAN (O-RAN) initiative through the
introduction of near-real-time (Near-RT) and non-real-time
(Non-RT) Radio Interface Controllers [11].

B. Edge Machine Learning for Cellular IoT

ML naturally complements IoT networks as the latter rep-
resent a rich source of data [2], [3]. Recent trends see shifting
ML deployment from the cloud towards the edge. The benefits
of ML at the edge are: 1) reduced latency and improved
responsiveness, 2) reduced traffic load towards the network
core, and 3) enhanced privacy as data remains at the edge.

The main challenges of implementing ML models at the
edge are scalability and resource scarcity [7]. Depending on
the ML algorithm being run on the edge node, the size of
the ML model can go as low as a few kilobytes. Since the

capability of ML models deployed at, e.g., NB-IoT devices,
is severely restricted, appropriate task offloading mechanisms
are a key to efficient system design and implementation [8].

Although there are numerous applications for ML at the
edge, current research focuses on ML for IoT security [12].
The anomaly detection algorithms at the edge represent an
underlying approach for many threats detection solutions [13].
However, integrating edge ML into 3GPP Cellular IoT network
is addressed only recently [14].

III. EDGE ML IN 3GPP NB-IOT: SYSTEM ARCHITECTURE

A. System Architecture

The three-level ML-augmented architecture considered in
this work is illustrated in Fig. 1. It consists of: 1) the edge ML
module embedded at the NB-IoT UE (ML-EDGE), 2) the fog
ML module placed within dedicated EPC nodes (ML-FOG),
and 3) the cloud ML module residing in mobile operator or
external cloud servers (ML-CLOUD).

The ML-EDGE module hosts low-complexity ML algo-
rithm implemented on top of the resource-constrained micro-
controller. It operates on data locally acquired by an NB-
IoT UE, trading-off minimum-delay system response with the
ML algorithm complexity and accuracy. ML-FOG module is
deployed at the fog gateways (FGW) within mobile operator
EPC. FGW may support medium-to-high complexity ML
algorithms fed by the data provided by a large pool of NB-
IoT edge nodes. ML-FOG response time is affected by radio
access and core network latency, which in the case of NB-
IoT may extend in the range of seconds [15]. ML-CLOUD
hosts high-complexity ML algorithms at cloud servers, and
provides the highest flexibility for training and implementing
ML algorithms, albeit with highest delays. Although not in
the focus of this paper, the critical part of the three-layer
architecture is an orchestration mechanism, whose task is to
govern the level at which the decision is made. Since the ML-
EDGE is the most challenging architecture element, we next
provide details on NB-IoT edge node design providing support
for ML-EDGE.

B. NB-IoT Edge Device Design

For the purpose of real-world demonstration and deploy-
ment, we designed and fabricated two different NB-IoT edge
node platforms, one for a static indoor use case (e.g., Smart
Buildings) illustrated in Fig. 2a, and another for a mobile
outdoor use case (e.g., Smart Logistics) illustrated in Fig 2b.
100 static and 50 mobile NB-IoT edge nodes are produced to
support emulation of a massive real-world NB-IoT setup (Fig.
2c). Both nodes feature standard on board components:

3GPP NB-IoT Module: We utilize BC68 (indoor node)
and BG96 (outdoor node) modules from Quectel. The former
supports 3GPP NB-IoT, while the latter supports both 3GPP
NB-IoT and LTE-M connectivity. The latter also integrates
GNSS module to provide the geolocation information which
is essential for outdoor use cases.

On-board sensors: Both nodes are equipped with the
set of sensors used to measure the atmospheric conditions
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Fig. 2: NB-IoT edge node design. (a) Indoor use case; (b) Outdoor use case; (c) NB-IoT nodes for massive testbed.

such as air temperature, pressure and humidity. The indoor
sensor includes additional illumination measurement sensor.
The outdoor sensor, apart from the localization data provided
by the GNSS module, uses the 6-axis Inertial Measurement
Unit (IMU) to collect data about the vibrations.

Micro-controller unit (MCU): The MCU used is a low-
power 32-bit ARM Cortex M0+ with 256KB of FLASH
and 32KB of SRAM, operating at 16MHz. The absence of
operating system as well as the hardware constraints limit the
usage of ML tools only to lightweight models that are fully
customized and optimized for a given application. Finally, an
external FLASH memory module enables data logging over
the intervals when there is no connectivity.

C. Data Inputs to ML-EDGE Module

NB-IoT edge nodes are capable of collecting two types
of data: i) application data (sensor data), and ii) UE-specific
data. Both data streams may feed edge ML, as we describe
in Sec. IV-B. Application data includes data acquired from
on-board sensors and is the source of data for end-user edge
ML applications. The UE-specific data is suitable input for
NWDAF/MDAF and are collect from three sources:

Radio channel conditions: Radio measurements are avail-
able from NB-IoT module through standard AT commands.
They provide a snapshot of statistics for numerous param-
eters such as Signal-to-Noise-Ration (SNR), Received Signal
Strength Indicator (RSSI), total Tx/Rx time, Block Error Rates
(BLER), etc., at a given instant the command is executed.

NB-IoT module current consumption: This feature is
available only in indoor NB-IoT platform. The dedicated
current-measurement circuit measures the current consumed
by BC-68 NB-IoT module, thus eliminating the influence of
other on-board components. Current sampling period is 1 ms,
i.e., it is aligned with a single subframe duration in NB-IoT.

NB-IoT and eNB message exchange logs: NB-IoT UE
modules allow for extraction of message exchange logs be-
tween NB-IoT UE and eNB using appropriate applications.
Such data logs provide opportunity for extracting a number
of useful information that provide details on NB-IoT UE
behavior, including reconstruction of detailed scheduling in-
formation and applied PHY layer configurations both in the
uplink and the downlink.

IV. EDGE ML MODULE AND APPLICATIONS

A. ML-EDGE module in NB-IoT
The ML-EDGE module in NB-IoT is designed taking into

account the device constraints. Due to a low computation
power of MCU and memory capacity, it is practically in-
feasible to train ML models directly on the NB-IoT device:
1) a large number of data points have to be stored on the
device to train a predictive model exhibiting an acceptable
level of accuracy, 2) the model training is a computationally
intensive optimization process usually performed in a large
number of iterative steps, 3) a low computation power prevents
any serious model validation and tuning of model hyper-
parameters. Consequently, we adopt a scheme in which a
lightweight inference engine is directly integrated into the
firmware of the NB-IoT device. The inference engine makes
predictions according to a neural network that was previously
trained, tuned and validated on an appropriately built data set.

The ML-EDGE inference engine performs the feed-forward
operation on a neural network stored on the device for data
points prior to their transmission to FGW. It is implemented
in C programming language as a standalone, self-contained
module without any external dependencies to third party
libraries. The training, validation and tuning of ML-EDGE
neural network models is performed offline in TensorFlow.
Model parameters are determined using the Adam optimizer.
Different loss functions are used for different types of ML-
EDGE neural network models: mean squared error for regres-
sion neural networks and autoencoders, categorical cross en-
tropy for n-ary classification models and binary cross entropy
for binary classification models. Before model training, data
points in the training dataset are normalized such that each
feature has zero mean and unit variance. The structure of the
trained models, its weights and data normalization parameters
are then exported as C declarations to a header file that is
included by the C module containing the implementation of
the generic neural network ML-EDGE inference engine.

B. Application Examples for Edge ML in NB-IoT
In this section, we present a sample of our recent appli-

cations of edge ML concepts deployed and demonstrated in
a real-world 3GPP NB-IoT network, carried out as part of a
sequence of EU funded research projects.
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NB-IoT module energy consumption measurements,
modelling and prediction [16]: Using the precise circuitry
for instantaneous current measurements, our indoor NB-IoT
node provides energy consumption measurements for every
packet transmitted/received by the NB-IoT UE. Using mes-
sage exchange logs, this consumption is further disaggregated
into phases of NB-IoT packet transmission (e.g., cell search
and synchronization, system information acquisition, random
access, UL/DL transmission) [17]. In our setup of 100 indoor
NB-IoT devices, 15 devices are equipped with current mea-
surement circuitry and are used as data loggers, associating
appropriately designed feature vectors with labels defined in
the form of packet-level energy consumption. Based on the
data sets and labels accumulated at data loggers at different
indoor reception conditions, deep learning based energy con-
sumption models can be designed, pre-trained and deployed
at the remaining NB-IoT edge devices (85 devices without
current measurement support) to provide for prediction of
energy consumed per packet at the NB-IoT UE. Such models
can be also deployed at ML-FOG (or ML-CLOUD) nodes,
providing a mobile operator with an efficient network-wide
support for predicting, monitoring and maintenance of battery
states and battery replacement requirements of massive sets of
connected NB-IoT devices [18].

Deep autoencoder anomaly detection in Smart Logistics
[19]: The most popular edge ML applications are in the
domain of anomaly detection [13]. In a recent work [9], we
have designed, implemented and deployed deep autoencoder
(AE) based anomaly detection for applications in Smart Lo-
gistics. The outdoor NB-IoT node is deployed attached to
shipping containers in a factory supply chain, in order to
collect data, deploy and test the ML-EDGE module. Based
on the collected data sets, deep AE is trained to distinguish
between the normal state (usual container vibrations during
transport) and the anomalous state (extensive vibrations or
container overturns). Two-level architecture is implemented
that orchestrates between decision being taken at the ML-
EDGE or ML-FOG module deployed within FGW as part of
the mobile operator EPC network.

Device identification for secure Industrial IoT using
wireless fingerprinting [20]: Security threats in industrial
IoT networks call for innovative applications of ML for IoT
security. Securing the expanded attack surface of a large
number of IoT devices will require using all available data at
edge nodes. The indoor NB-IoT node provides abundance of
metadata for these purposes. In particular, collection and usage
of so called “wireless fingerprints,” in the form of channel state
information, could be used for additional device identification.
ML-EDGE module may host anomaly detection algorithm that
would distinguish between normal and anomalous wireless fin-
gerprints received from NB-IoT UE, thus indicating possible
physical tampering with the device. In addition, for a collec-
tion of NB-IoT nodes deployed at a certain location, ML-FOG
module may host a ML classification method to distinguish
between deployed devices not only by their MAC/IP address,
but also by their wireless fingerprints.

V. DEMONSTRATION OF EDGE ML FOR 3GPP NB-IOT

A. System Integration and Demonstration

To integrate the system, collect real-world data and perform
testing and evaluation, NB-IoT UEs are connected to the FGW
set inside an EPC of a mobile operator network. NB-IoT UEs
running ML-EDGE modules periodically send data points via
macro-cellular NB-IoT eNB to the FGW using UDP. Within
the virtualized environment of FGW server, FOG-ML software
module receives and stores UDP packets sent by NB-IoT UEs.
The FGW server provides sufficient resources to run higher
complexity ML-FOG module, in contrast to the lightweight
ML-EDGE module on the NB-IoT UE.

Based on the feature vector extracted from sensory or UE-
specific data, ML-EDGE is periodically fed with an input
feature vector. Depending on the design choices, the same or
different feature vector is also sent to FGW for inference at the
more powerful ML-FOG engine. For each input vector, ML-
EDGE produces a decision and a confidence score, which is
forwarded to the ML orchestration engine for further offload-
ing decisions. Note that the communication delay incurred by
the NB-IoT network connection may vary between the order
of tens-of-milliseconds to tens-of-seconds, depending on the
NB-IoT device radio conditions and the network load [15].

The ML-augmented NB-IoT architecture features several
important properties: 1) ML-EDGE at the NB-IoT node pro-
vides immediate decisions after each data point providing
extremely fast response time; 2) ML-FOG may apply more
powerful design using a longer feature vector and more
complex architecture, however, the NB-IoT uplink can be
a bottleneck and cause unpredictable delays; 3) ML-EDGE
module has access to raw data, while ML-FOG gets access
to data aggregated at the NB-IoT UE in order to reduce
communication load; (4) The final decision at the system level
is achieved in coordination of ML orchestration engine, whose
offloading decisions are out of the scope of this paper.

B. Performance Results

In this section, we present an experimental results demon-
strating trade-off between system accuracy and response time.
The setup consists of two anomaly detection models: ML-
EDGE AE integrated into the firmware of the NB-IoT device,
and ML-FOG AE deployed on the FGW. The difference
between the two models is that ML-EDGE AE processes
individual data points through a single hidden layer, while ML-
FOG AE detects anomalies in timeseries data (k consecutive
data points) through three hidden layers.

The results presented here extend our evaluation in [9].
Namely, ML-EDGE and ML-FOG AEs are expanded by
incorporating two widely used regularization mechanisms to
reduce overfitting and decrease errors of ML models based on
neural networks: dropout layers after each hidden layer and
L2 regularization for output of hidden nodes. The considered
regularization mechanisms are incorporated both individually
(denoted by ”Dropout” and ”L2”) and jointly (”Dropout-
L2”). Expanded ML-EDGE and ML-FOG AEs are trained and
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tested using the same datasets and evaluation methodology as
in [9]: the training is performed on the dataset reflecting nor-
mal device behaviour, while the test dataset contains labeled
anomalous events, so the AEs are examined and compared by
measuring precision, recall and F1.

The evaluation results of different variants of ML-EDGE
AEs are summarized in Table I. ML-EDGE AEs with reg-
ularization mechanisms exhibit the same level of recall as
the base ML-EDGE AE without regularization (ML-EDGE-
Base). However, ML-EDGE AEs with regularization have con-
siderably higher precision (F1 scores) than ML-EDGE-Base.
We conclude that regularization mechanisms can improve the
accuracy of anomaly detection at NB-IoT devices nodes by
lowering the number of false positive anomaly alarms.

TABLE I: Evaluation of ML-EDGE autoencoders.

Precision Recall F1

ML-EDGE-Base 0.7047 0.6897 0.6971
ML-EDGE-Dropout 0.7349 0.6769 0.7047
ML-EDGE-L2 0.7926 0.6821 0.7332
ML-EDGE-Dropout-L2 0.7661 0.6821 0.7216

The F1 scores of different variants of ML-FOG AEs with
regularization are shown in Figure 3 for timeseries lengths
from 1 to 10. Expanded ML-FOG AEs processing timeseries
longer than 3 points always achieve higher F1 score than the
best ML-EDGE AE (ML-EDGE-L2). Thus ML-FOG anomaly
detection models are able to improve overall system accuracy
by appropriate offloading decisions. The obtained results quan-
tify trade-offs between performance of anomaly detection and
response time for edge-based or fog-based anomaly detection.
The response time of ML-EDGE AEs corresponds to one
sampling period, while the response time of ML-FOG AEs
depends on the length of the time series processed. The ML-
FOG AE with both regularization mechanisms (ML-FOG-
Dropout-L2) processing timeseries of length 6 achieves the
highest F1 score (F1 = 0.8042). This AE improves the F1 score
of ML-EDGE-L2 by 9.68% at the cost of increased response
time for T = 6 sampling periods.

VI. CONCLUSION

In this paper, we presented the design, implementation,
real-world deployment and evaluation of an ML-augmented
architecture for 3GPP NB-IoT networks. In the future work,
we will focus on bringing our implementation closer to demon-
strating 3GPP-based NWDAF services in NB-IoT network. In
addition, we plan to extend our work to designing optimal
ML orchestration strategies that would maximize the overall
efficiency of edge ML solutions in various NB-IoT use cases.
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