
Straggler-Resilient Secure Aggregation
for Federated Learning

Reent Schlegel∗, Siddhartha Kumar∗, Eirik Rosnes∗, and Alexandre Graell i Amat†∗
∗Simula UiB, Bergen, Norway

†Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

Abstract—We present CodedSecAgg, a straggler-resilient secure
aggregation scheme for federated learning. CodedSecAgg intro-
duces redundancy on the devices’ data across the network, which is
leveraged during the iterative learning phase at the central server
to update the global model based on the responses of a subset of
the devices. Compared to other schemes in the literature, which
deal with device dropouts by ignoring the contribution of dropped
devices, the proposed scheme does not suffer from the client-drift
problem. We apply CodedSecAgg to a classification problem on
the MNIST dataset. For a scenario with 120 devices, we show
that CodedSecAgg outperforms state-of-the-art LightSecAgg in
terms of latency by a factor of 6.6 to 15.8, depending on the
number of colluding agents, for an accuracy of 95%.

I. INTRODUCTION

Federated learning [1], [2] is a distributed machine learning
framework in which multiple devices and a central server
jointly train a global model on the devices’ private data. The
key idea is that the devices do not exchange their data with the
central server. More precisely, at each epoch, the devices train
a local model on their local data and send the corresponding
locally-trained models to the central server. The central server
aggregates the local models to update the global model, which is
sent to the devices for the next epoch of the training. Federated
learning has been used in real-world applications, e.g., for
medical data [3], text predictions on mobile devices [4], or by
Apple to personalize Siri.

While in federated learning the devices do not share their
local data with the central server, hence some level of privacy
is preserved, model inversion attacks [5], [6] can allow the
central server to infer information about devices’ local data
from their local models. To circumvent this problem, secure
aggregation protocols [7]–[14] have been proposed to allow
the aggregation of local models at the central server without
revealing devices’ individual models.

Training over multiple devices, with potentially very different
computational capabilities and unstable connectivity, can suffer
from so-called straggler devices, i.e., devices that take a long
time to compute their local gradients. Dropouts, which can
be seen as an extreme case of straggling, may also occur
during the secure aggregation phase. The schemes in [7]–[14]
provide security against inversion attacks and resiliency against
dropouts by hiding devices’ local models via masking and
exploiting secret sharing ideas. The masks have an additive
structure so that they can be removed when aggregated at the
central server. To provide resiliency against dropouts, secret

This work was financially supported by the Swedish Research Council under
grant 2020-03687.

sharing of the random seeds that generate the masks between
the devices is performed, so that the central server can cancel
the masks belonging to dropped devices. Among these schemes,
LightSecAgg is one of the most efficient ones.

The schemes [7]–[14] ignore the contribution of dropped
devices. However, ignoring dropped (or straggling) devices
makes these schemes sensitive to the client-drift problem,
i.e., the global model tends toward local solutions of the
participating devices.

In this paper, we propose CodedSecAgg, a secure aggregation
scheme that provides resiliency against stragglers (and hence
dropouts) and does not suffer from the client-drift problem.
Borrowing ideas from coded distributed computing for straggler
mitigation in data centers [15]–[18], CodedSecAgg provides
straggler resiliency by introducing redundancy on the devices’
local data via Shamir’s secret sharing [19]. Particularly, the
proposed scheme consists of two phases. In the first phase,
each device encodes its data using Shamir’s secret sharing
scheme (SSS) and sends one piece of the encoded data to
each of the other devices. In the second phase, the devices
and the central server iteratively and collaboratively train the
global model. CodedSecAgg provides information-theoretic
security against model inversion attacks up to a given number
of colluding malicious agents (including the central server).
The proposed scheme is tailored to linear regression. However,
it can be applied to nonlinear models via kernel embedding.
We apply CodedSecAgg to a classification problem on the
MNIST dataset. For a scenario with 120 devices, CodedSecAgg
achieves a speed-up factor of 6.6 for 60 colluding agents and up
to 15.8 for a single malicious agent compared to LightSecAgg
for an accuracy of 95%.

In the context of traditional federated learning (i.e., without
secure aggregation) [20], [21] proposed code-based schemes for
straggler mitigation. However, the scheme in [20] leaks more
information than traditional federated learning. Our scheme in
[21] provides straggler resiliency and yields the same level of
privacy as traditional federated learning. CodedSecAgg applies
similar ideas as in [21] to secure aggregation. To the best of
our knowledge, CodedSecAgg is the first scheme that provides
resiliency against straggling devices for secure aggregation.

II. PRELIMINARIES

A. Notation

We use uppercase and lowercase bold letters for matrices and
vectors, respectively, italics for sets, and sans-serif letters for
random variables, e.g., X , x, X , and X represent a matrix, a

712ISBN: 978-1-6654-6798-8 EUSIPCO 2022

vector, a set, and a random variable, respectively. An exception
to this rule is ϵ(e), which will denote a matrix. Vectors are
represented as row vectors throughout the paper. The transpose
of a matrix X is denoted as X⊤. The gradient of a function
f(X) with respect to X is denoted by ∇Xf(X). Furthermore,
we represent the Euclidean norm of a vector x by ∥x∥, while
the Frobenius norm of a matrix X is denoted by ∥X∥F. Given
integers a, b ∈ Z, a < b, we define [a, b] ≜ {a, . . . , b}, where
Z is the set of integers, and [a] ≜ {1, . . . , a} for a positive
integer a. For a real number e, ⌊e⌋ is the largest integer less
than or equal to e. The expectation of a random variable Λ
is denoted by E[Λ], while I(·; ·) denotes mutual information
and H(·|·) conditional entropy. The finite field of order q is
denoted by GF(q).

B. Shamir’s Secret Sharing Scheme

Shamir’s SSS [19] with parameters (n, k) encodes a secret
x ∈ GF(q) into n shares s1, . . . , sn such that any subset of less
than k shares do not reveal any information about x whereas
any subset of k or more shares contain sufficient information
to recover x. More precisely, for any I ⊂ {s1, . . . , sn} with
|I| < k and any J ⊆ {s1, . . . , sn} with |J | ≥ k, we have
I(x; I) = 0 and H(x|J) = 0.

Shamir’s SSS encodes x together with k−1 independent and
uniformly-distributed random numbers r1, . . . , rk−1 ∈ GF(q)
using a nonsystematic (n, k) Reed-Solomon code. The random
numbers {ri} ensure that any k − 1 or less shares are
independent and uniformly random, i.e., they are statistically
independent of x, resulting in I(x; I) = 0. Additionally, the
maximum distance separable property of Reed-Solomon codes
ensures that x can be recovered from any k shares, i.e.,
H(x|J) = 0.

C. Fixed-Point Numbers

As secret sharing cannot be directly applied to real-valued
data, our scheme considers a fixed-point arithmetic representa-
tion of the real data and subsequently fixed-point arithmetic
operations.

Fixed-point numbers are a datatype to represent rational
numbers with a finite amount of bits. Fixed-point numbers
of length ℓ and resolution f can be seen as integers from
Z⟨ℓ⟩ = [−2ℓ−1, 2ℓ−1 − 1] scaled by 2−f . More precisely, a
fixed-point number x̃ is given as x̃ = x̄·2−f , for some x̄ ∈ Z⟨ℓ⟩.
We denote the set of all fixed-point numbers of length ℓ and
resolution f as Qℓ,f .

Addition of two fixed-point numbers can be performed via
standard integer addition with a subsequent modulo operation.
To this end, we define (·)Z⟨ℓ⟩ as the map from the integers
onto the set Z⟨ℓ⟩ given by the modulo operation. Now, let
ã, b̃ ∈ Qℓ,f , with ã = ā2−f and b̃ = b̄2−f . For c̃ = ã+ b̃, with
c̃ = c̄2−f , we have c̄ = (ā+ b̄)Z⟨ℓ⟩ .

Multiplication over Qℓ,f is performed via standard integer
multiplication, followed by a scaling over the reals to retain
the precision, and lastly, a modulo operation. In particular, for
d̃ = ã · b̃, with d̃ = d̄2−f , we have d̄ = (⌊ā · b̄ · 2−f⌋)Z⟨ℓ⟩ .

III. SYSTEM MODEL

We consider a scenario where n devices want to col-
laboratively train a global model on local data with the
help of a central server. Each device i has its local data
{(x(i)

j ,y
(i)
j)|j ∈ [mi]} consisting of mi training examples,

where {x(i)
j } are the feature vectors, of dimension d, and {y(i)

j }
the corresponding labels, of dimension c. More precisely, we
consider the case where the devices wish to learn the linear
model

y = xΘ , (1)

where Θ contains the parameters of the model. To this end,
the devices utilize federated learning to train the global model
Θ on the m =

∑
i mi training examples in the network.

To represent the data, the devices utilize the fixed-point
datatype Qℓ,f . In particular, the local data at device i is given
as x

(i)
j ∈ Qd

ℓ,f and y
(i)
j ∈ Qc

ℓ,f , and we represent the data in
matrix form as

X(i) =

x
(i)
1
...

x
(i)
mi

 and Y (i) =

y
(i)
1
...

y
(i)
mi

 .

Furthermore, we represent the global dataset consisting of
all m training examples as two matrices X and Y given by

X =

x1

...
xm

 =

X(1)

...
X(n)

 and Y =

y1

...
ym

 =

Y (1)

...
Y (n)

 ,

where X is of size m× d and Y of size m× c.

A. Federated Gradient Descent

In federated gradient descent, the devices in the network
collaboratively and iteratively train a global model Θ on local
data available at the devices. The model Θ is the solution of
the minimization problem

Θ = argmin
Θ′

f(Θ′) ,

where f(Θ) is the global loss function. For a linear model,

f(Θ) ≜
1

2m

m∑
l=1

∥xlΘ− yl∥2 +
λ

2
∥Θ∥2F ,

with regularization parameter λ. Let the local loss function at
device i be

fi(Θ) =
1

2mi

mi∑
j=1

∥x(i)
j Θ− y

(i)
j ∥2 ,

such that we can express the global loss function as

f(Θ) =

n∑
i=1

mi

m
fi(Θ) +

λ

2
∥Θ∥2F .

The training in federated gradient descent is performed itera-
tively over multiple epochs. In each epoch, devices train locally
on their data using the local loss function and upload their

713

local model updates to the central server. The central server
aggregates all local model updates to obtain the new global
model for the next epoch. In particular, let Θ(e) be the global
model at epoch e. Device i computes

G
(e)
i = mi∇Θfi(Θ

(e)) = X(i)⊤X(i)Θ(e) −X(i)⊤Y (i) ,
(2)

and sends G
(e)
i to the central server. The central server then

computes G(e) =
∑

i G
(e)
i and updates the global model as

∇Θf(Θ(e)) =
1

m
G(e) + λΘ(e) , (3)

Θ(e+1) = Θ(e) − µ∇Θf(Θ(e)) , (4)

with learning rate µ. The central server sends the updated model
Θ(e+1) to the devices for the next epoch. The computations
in (2)–(4) are repeated until convergence, i.e., until Θ(e+1) ≈
Θ(e).

B. Computation and Communication Model

We assume the time it takes a device to finish a computation
is random. We model the computation time as a shifted
exponentially-distributed random variable as it is common
in the literature [22]. In this model, the computation time is
comprised of a deterministic part—the shift—that corresponds
to the time it takes a device to perform the calculations
in its processing unit and a random delay—exponentially
distributed—that corresponds to random events such as memory
access and tasks running in the background.

Let Tcomp
i be the time it takes device i to perform ρi multiply

and accumulate (MAC) operations. We then have

Tcomp
i =

ρi
τi

+ Λi ,

with τi being the deterministic number of MAC operations
device i performs per second and Λi the random exponentially-
distributed setup time with E[Λi] = 1/ηi.

In practice, the communication links are unreliable and
may fail. In case the link fails, the devices will simply re-
transmit until a successful transmission occurs. Let Nu

i and
Nd

i be geometrically-distributed random variables with success
probability 1−pi that model respectively the number of tries it
takes device i to successfully upload and download a message
to and from the central server through a channel with failure
probability pi. Furthermore, let γu and γd be the data rate in
the upload and download, respectively. Then, the time it takes
device i to upload and download b bits is given as

Tu
i =

Nu
i

γu
b and Td

i =
Nd

i

γd
b ,

respectively.
In the sharing phase, communication between any two

devices is performed via a secure, i.e., encrypted and authen-
ticated, channel and routed through the central server. This
enables efficient device-to-device communication between any
two devices in the network regardless of spatial separation of
the devices.

C. Threat Model and Goal

We assume that all agents, i.e., the n devices and the central
server, are honest-but-curious. We further assume that up to z
agents in the network collude to infer information about the
local datasets of other devices. The goal is to ensure device
data privacy against the z colluding agents while providing
straggler mitigation in the federated learning scenario. Privacy
in this setting means that malicious devices do not gain any
information about the local datasets of other devices and that
the central server only learns the aggregate of all local gradients
to prevent a model inversion attack.

IV. CODED SECURE AGGREGATION

In this section, we present our proposed scheme, Cod-
edSecAgg, which provides straggler mitigation for secure
aggregation in federated learning. CodedSecAgg consists of
two phases. In the first phase, the devices share their data in a
secure manner with other devices. Subsequently, the devices
train the global model on their own and shared data in such a
way that the computation results of a subset of the devices is
sufficient to recover the aggregated model.

The model updates in CodedSecAgg slightly deviate from the
standard federated gradient descent described in Section III-A.
The global model at epoch e can be expressed as

Θ(e) = Θ(1) + ϵ(e) ,

where ϵ(e) is an update matrix and Θ(1) is the model at the
first epoch. Hence, we can rewrite the local model updates
in (2) as

G
(e)
i = G

(1)
i +X(i)⊤X(i)ϵ(e) .

As a result, the computations at the devices in each epoch are
affine in X(i)⊤X(i) instead of quadratic in X(i). At the end
of epoch e, the central server simply has to send ϵ(e+1) instead
of Θ(e+1) to the devices.

Remark 1. Due to the use of Shamir’s SSS to encode the
devices’ data, the proposed scheme applies to models in the
form of (1). However, it can also be applied to nonlinear
problems via kernel embedding. In Section V, we will apply
CodedSecAgg to a classification task.

A. Data Sharing

The devices encode their transformed dataset X(i)⊤X(i)

and the gradient at epoch 1 G
(1)
i using Shamir’s (n, k) SSS

to obtain 2n shares S
(i)
x,1, . . . ,S

(i)
x,n and S

(i)
g,1, . . . ,S

(i)
g,n (see

Section II-B). To this end, a fixed-point number x̃ = x̄2−f is
represented by its integer part x̄. The integer x̄ ∈ Z⟨ℓ⟩ is then
mapped into the field GF(q) for a prime q > 2ℓ+f . We need
a field of size at least 2ℓ+f because we need to modify the
multiplication in Qℓ,f in our scheme. We postpone the scaling
by 2−f until after the decoding of the SSS at the central
server. That means, to compute d̃ = ã · b̃, the devices compute
d̄′ = ā′ · b̄′, where ā′, b̄′, d̄′ ∈ GF(q). In turn, the central server
will map d̄′ to the integers and apply the scaling by 2−f to
get back the initial accuracy. In order to get the correct d̄

714

Central server

D1 D2 D3

Sg,1,Sx,1 Sg,2,Sx,2 Sg,3,Sx,3

Sg,1 + Sx,1ε
(e) Sg,2 + Sx,2ε

(e) Sg,3 + Sx,3ε
(e)

Θ(e) = Θ(1) + ε(e)

Fig. 1. An example showcasing an epoch of CodedSecAgg. The system
consists of n = 3 devices, labeled D1 to D3, and a central server. Each
device has access to one share of the global dataset.

corresponding to d̃ we have to ensure that no overflow in the
finite field due to the multiplication without scaling occurs.
Therefore, we have to facilitate integers in Z⟨ℓ+f⟩ and not just
in Z⟨ℓ⟩ for which we need a field size q > 2ℓ+f instead of
q > 2ℓ. After mapping the entries of X(i)⊤X(i) and G

(1)
i to

GF(q), the devices apply Shamir’s SSS (see Section II-B).
Subsequently, device i sends S

(i)
x,j and S

(i)
g,j to device j

for j ∈ [n]\i. For each device, this encompasses transmitting
(n−1)(d2+dc) elements from GF(q). After receiving all n−1

incoming transmissions, device i computes Sx,i =
∑

j S
(j)
x,i

and Sg,i =
∑

j S
(j)
g,i . Due to the linearity of Shamir’s SSS,

{Sx,i} is a secret sharing of X⊤X and {Sg,i} is a secret
sharing of G(1).

B. Iterative Learning

The devices perform the training of the global model directly
on their shares of the global data {Sx,i} and {Sg,i}. In epoch
e, device i computes

G̃
(e)
i = Sg,i + Sx,iϵ

(e) . (5)

The result G̃(e)
i is a share of the global gradient G(e) at epoch

e. Upon completion of (5), device i sends G̃
(e)
i to the central

server. After receiving the result of (5) from k different devices,
the central server can decode the SSS, map the result to Z⟨ℓ+f⟩,
and apply the scaling by 2−f to obtain G(e). In turn, the central
server updates the global model in the usual manner described
in (3) and (4). The scheme is illustrated in Fig. 1.

In CodedSecAgg the aggregated gradient at each epoch of
the gradient descent algorithm is equivalent to the gradient
in traditional federated learning and hence, CodedSecAgg
converges to the global optimum.

C. Analysis

In CodedSecAgg, any device has access to at most one share
of the data of any other device. Shamir’s SSS guarantees that
any less than k shares do not leak any information about the
secret. As a result, CodedSecAgg provides privacy against

any z < k colluding agents including the central server. At
each epoch, the central server collects shares of the global
gradient. The only information it can infer from these shares
is the global gradient itself. The central server does not have
access to any (shares of) local gradients or datasets and hence,
a model inversion attack is prevented.

CodedSecAgg trades off an initial communication de-
lay—due to the sharing phase—with much shorter epoch
times—thanks to the introduced redundancy. The introduced
redundancy can be leveraged at the central server in each epoch
to recover the aggregated gradient from the responses of the
k fastest devices in that epoch. This significantly speeds up
the federated gradient descent compared to existing secure
aggregation protocols, where the central server has to wait for
all devices in the network to finish their computations in order
to incorporate their model updates into the global model.

V. NUMERICAL RESULTS

We apply CodedSecAgg to a classification task on the
MNIST dataset. We simulate a scenario with n = 120 devices
and a central server. We utilize kernel embedding to linearize
the classification problem via Python’s radial basis function
sampler of the sklearn package (with 5 as kernel parameter and
2000 features). We sort the training data by the labels prior
to distributing it across the devices in order to simulate non-
identically distributed data. As a result, in our simulation we
have d = 2000, c = 10 (we use one-hot encoding for the labels),
and mi = 500. At the central server we use regularization
parameter λ = 9×10−6 and an initial learning rate of µ = 6.0,
which is updated as µ← 0.8µ at epochs 200 and 350.

We represent the fixed-point numbers with ℓ = 48 bits
out of which f = 24 bits are for the fractional part. For
CodedSecAgg, we assume that the encoding of the data is
performed offline as no interaction is required for this step.
For the communication we assume the devices utilize the LTE
Cat 1 standard for Internet of Things devices. This results in
data rates of γd = 10 Mbit/s and γu = 5 Mbit/s. We assume
a channel failure probability of pi = 0.1 and a 10% header
overhead for each transmission. Furthermore, each device is
capable of full-duplex transmission (as per the LTE Cat 1
standard) and we assume that there are sufficient orthogonal
channels for all devices, i.e., we assume that all devices can
simultaneously upload and download data to and from the
central server.

To simulate a heterogeneous network, we sample the MAC
rate τi of device i uniformly at random from 25 · 106, 5 · 106,
2.5 · 106, and 1.25 · 106 MAC/s. The setup times Λi at the
devices are sampled at each epoch. We assume an expected
value of half of the deterministic computation time, i.e., when
computing ρi MAC operations at device i we have ηi =

2τi
ρi

.
In Fig. 2, we compare CodedSecAgg with the state-of-the-

art secure aggregation scheme LightSecAgg [12] for different
numbers of colluding agents z. In LightSecAgg, devices
compute the local model updates only on their data in each
epoch. Subsequently, the devices secretly share the local
gradients in order to securely aggregate them at the central

715

0 0.5 1 1.5 2 2.5 3
0.3
0.4

0.5

0.6

0.7

0.8

0.9

0.95

Training time (h)

A
cc
u
ra
cy

CodedSecAgg, z = 1
LightSecAgg, z = 1
CodedSecAgg, z = 5
LightSecAgg, z = 5
CodedSecAgg, z = 10
LightSecAgg, z = 10
CodedSecAgg, z = 20
LightSecAgg, z = 20
CodedSecAgg, z = 30
LightSecAgg, z = 30
CodedSecAgg, z = 60
LightSecAgg, z = 60

Fig. 2. Accuracy versus training time for a classification problem on the
MNIST dataset for CodedSecAgg (solid curves) and LightSecAgg (dashed
curves) with n = 120 devices and security against z colluding agents.

server. As a result, there is no big initial sharing phase as in
CodedSecAgg. However, as there is no redundancy of data
in the network, at each epoch of LightSecAgg the central
server has to wait for all devices to finish their gradient
computations before the secure aggregation can start. This
results in longer epoch times than for CodedSecAgg. As we can
see in Fig. 2, CodedSecAgg trades off the initial communication
latency for drastically reduced epoch times. As a result, for
meaningful levels of accuracy above 90%, CodedSecAgg yields
significantly lower latency regardless of the privacy level z.

The impact of the privacy level z differs between the
two schemes. Since LightSecAgg succumbs to the straggler
problem, the computation times of the model upgrades are
a major contributor to the overall latency of the scheme.
Furthermore, during each epoch, the gradients have to be shared
in a secure manner. Both the computation times and the sharing
are independent of z. Hence, there is only a small increase in
latency for LightSecAgg with increasing z. For CodedSecAgg,
z has a direct impact on the straggler mitigation capabilities.
Since the central server has to wait for the responses of the k
fastest devices and we have k > z, the epoch times increase
significantly with increasing z. However, even when half the
devices in the network collude, i.e., z = 60, CodedSecAgg
still gives a speed-up of 6.6 compared to LightSecAgg for an
accuracy of 95%. For z = 1, this speed-up increases to 15.8.

VI. CONCLUSION

We presented CodedSecAgg, a straggler-resilient secure
aggregation scheme for federated learning. CodedSecAgg relies
on the linearity of the learning problem, but can be applied
to nonlinear tasks via kernel embedding. For a classification
task on the MNIST dataset and a scenario with 120 devices,
CodedSecAgg outperforms state-of-the-art LightSecAgg in
terms of latency by a factor of 6.6 for 60 colluding agents
for a target accuracy of 95%. The speed-up factor increases to
15.8 for a single malicious agent.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Int. Conf. Artificial Intell. Stats. (AISTATS),
Fort Lauderdale, FL, Apr. 2017, pp. 1273–1282.

[2] J. Konec̆ný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communica-
tion efficiency,” in NIPS Workshop Private Multi-Party Mach. Learn.
(PMPML), Barcelona, Spain, Dec. 2016.

[3] A. Jochems et al., “Developing and validating a survival prediction model
for NSCLC patients through distributed learning across 3 countries,” Int.
J. Radiat. Oncol. Biol. Phys., vol. 99, no. 2, pp. 344–352, Oct. 2017.

[4] K. Bonawitz et al., “Towards federated learning at scale: System design,”
in Proc. Mach. Learn. Syst. (MLSys), Stanford, CA, Mar./Apr. 2019, pp.
374–388.

[5] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), Denver, CO, Oct. 2015,
pp. 1322–1333.

[6] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from federated
learning,” in Proc. IEEE Int. Conf. Comp. Commun. (INFOCOM), Paris,
France, Apr./May 2019, pp. 2512–2520.

[7] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), Dallas, TX, Oct./Nov. 2017, pp. 1175–1191.

[8] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramachandran,
“FastSecAgg: Scalable secure aggregation for privacy-preserving federated
learning,” in Int. Workshop Fed. Learn. User Privacy Data Confidentiality,
Vienna, Austria, Jul. 2020.

[9] J. So, B. Güler, and A. S. Avestimehr, “Turbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning,” IEEE J. Sel.
Areas Inf. Theory, vol. 2, no. 1, pp. 479–489, Mar. 2021.

[10] A. R. Elkordy and A. S. Avestimehr, “HeteroSAg: Secure aggregation
with heterogeneous quantization in federated learning,” IEEE Trans.
Commun., vol. 70, no. 4, pp. 2372–2386, Apr. 2022.

[11] J. So, R. E. Ali, B. Güler, and A. S. Avestimehr, “Secure aggregation
for buffered asynchronous federated learning,” in 1st NeurIPS Workshop
New Frontiers Fed. Learn. (NFFL), online, Dec. 2021.

[12] J. So, C. He, C.-S. Yang, S. Li, Q. Yu, R. E. Ali, B. Güler, and
S. Avestimehr, “LightSecAgg: a lightweight and versatile design for
secure aggregation in federated learning,” in Proc. Mach. Learn. Syst.
(MLSys), Santa Clara, CA, Aug./Sep. 2022.

[13] Y. Zhao and H. Sun, “Information theoretic secure aggregation with
user dropouts,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Melbourne,
Australia, Jul. 2021, pp. 1124–1129.

[14] T. Jahani-Nezhad, M. A. Maddah-Ali, S. Li, and G. Caire, “SwiftAgg+:
Achieving asymptotically optimal communication load in secure aggre-
gation for federated learning,” Mar. 2022, arXiv:2203.13060.

[15] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding
framework for distributed computing with straggling servers,” in Proc.
IEEE Globecom Workshops (GC Wkshps), Washington, DC, Dec. 2016.

[16] K. Lee, M. Lam, R. Pedersani, D. Papailiopoulos, and K. Ramachandran,
“Speeding up distributed machine learning using codes,” IEEE Trans. Inf.
Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[17] A. Severinson, A. Graell i Amat, and E. Rosnes, “Block-diagonal and
LT codes for distributed computing with straggling servers,” IEEE Trans.
Commun., vol. 67, no. 3, pp. 1739–1753, Mar. 2019.

[18] S. Dutta, V. Cadambe, and P. Grover, ““Short-Dot”: Computing large
linear transforms distributedly using coded short dot products,” IEEE
Trans. Inf. Theory, vol. 65, no. 10, pp. 6171–6193, Oct. 2019.

[19] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp.
612–613, Nov. 1979.

[20] S. Prakash, S. Dhakal, M. R. Akdeniz, Y. Yona, S. Talwar, S. Avestimehr,
and N. Himayat, “Coded computing for low-latency federated learning
over wireless edge networks,” IEEE J. Sel. Areas Commun., vol. 39,
no. 1, pp. 233–250, Jan. 2021.

[21] S. Kumar, R. Schlegel, E. Rosnes, and A. Graell i Amat, “Coding for
straggler mitigation in federated learning,” in Proc. IEEE Int. Conf.
Commun. (ICC), Seoul, Korea, May 2022.

[22] J. Zhang and O. Simeone, “On model coding for distributed inference
and transmission in mobile edge computing systems,” IEEE Commun.
Lett., vol. 23, no. 6, pp. 1065–1068, Jun. 2019.

716

