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Abstract—Thanks to its capability to provide a uniform service
rate for the User Equipments (UEs), Cell-free (CF) massive
Multiple-Input, Multiple-Output (mMIMO), has recently at-
tracted considerable attention, both in academia and in industry,
and so is considered as one of the potential technologies for
beyond-5G and 6G. However, the reuse of the same pilot signals
by multiple users can create the so-called pilot contamination
problem, which can hinder the CF mMIMO from unlocking
its full performance. In this paper, we address the challenge
by formulating the pilot assignment as a maximally diverse
clustering problem and propose an efficient yet straightforward
repulsive clustering-based pilot assignment scheme to mitigate
the effects of pilot contamination on CF mMIMO. The numerical
results show the superiority of the proposed technique compared
to some other methods with respect to the achieved uplink per-
user rate.

Index Terms—cell-free massive MIMO, pilot assignment, pilot
contamination, repulsive clustering, maximally diverse clustering

I. INTRODUCTION

Evolving from the first to the fifth generation, many tech-
nologies have been proposed to support growing traffic and
service demands in mobile networks. Network densification
is a common technique to increase the network coverage
and rate for the User Equipments (UEs). Densification can
happen both by increasing the number of the Base Stations
(BSs), a.k.a. ultra dense networks, or the number of the
antennas at the BS, a.k.a. massive Multiple-Input, Multiple-
Output (mMIMO). Each of these approaches suffers from
some shortages: deploying a large number of BSs increases
the inter-cell interference and hence reduces the service quality
for the UEs, while in the mMIMO, UEs located at the edge
of the cell suffer from high propagation loss because of the
long distance from the BS. Cell-free (CF) mMIMO [1] has
recently been introduced as an answer to the shortage of the
technologies mentioned above by adopting the best of both.
The CF mMIMO systems are composed of a large number
of distributed Access Points (APs) that jointly serve relatively
fewer number of UEs. The operation, unlike the traditional
cellular network, takes place in a user-centric fashion, where
each UE is surrounded and served by multiple APs. The APs
are connected to a central processing units (CPU) through
high-capacity error-free channels, where the network synchro-
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nization, data detection/precoding/decoding, and some other
network management operations take place.

CF mMIMO adopts the block fading models, where time-
frequency channels are divided into coherence blocks of τc
channel uses. Each coherent block is further divided into three
sub-intervals such that: τc = τp+τu+τd, where τp is used for
uplink pilot training, and τu and τd are used for uplink and
downlink data transmission, respectively. Due to the limited
number of channel uses in each coherence block, we can
only have a limited number of orthogonal pilots, which is
typically smaller than the number of UEs. This forces us to
reuse the same pilots for different UEs, which introduces some
undesirable effects, known as pilot contamination: the fading
channel can not be accurately estimated at the APs due to the
co-pilot interference among UEs.

The random pilot assignment presented in [1] is not effi-
cient, and a proper pilot assignment policy can significantly
reduce the effects of the so-called pilot contamination problem.
A greedy pilot assignment is proposed in [1], which iteratively
updates the pilot sequence for the UE with minimum rate.
A structured pilot assignment scheme is proposed in [2]
that maximizes the minimum distance between the co-pilot
UEs. A location-based greedy pilot assignment is proposed
in [3], that utilized the location information of the UEs
to improve the initial pilot assignment. The authors in [4]
considered the pilot assignment as a topological interference
management problem with multiple groupcasting messages.
They then formulated two topological pilot assignments for
known and unknown UE/AP connectivity patterns. Graph
theory has also been used for modeling the pilot assignment,
where by creating interference graph among the UEs, graph
coloring, [5] and weight graphic [6] is used to assign pilots
for different UEs. Tabu search is another approach that has
already been considered to the pilot assignment problem [7].
Buzzi et. al. [8] formulated pilot assignment as a graph
matching problem and proposed a Hungarian algorithm to
solve it. A weighted count-based pilot assignment is presented
in [9], which considers the user’s prior geographic information
and pilot power to maximize the pilot reuse weighted distance.
Another scalable pilot assignment algorithm based on deep
learning is presented in [10] that maps between user locations
and pilot assignment schemes. The co-pilot interference, in
principle, is because of the pilot reuse in UEs that are close
to each other. So, a valid pilot assignment scheme could only
rely on the UEs geographical locations instead of adopting a
costly channel estimation procedure to form the interference
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graph. Motivated by the above considerations, in this paper, we
consider the pilot assignment in CF mMIMO as a maximally
diverse clustering problem, where the UEs are divided into
clusters that maximize inter-cluster heterogeneity and intra-
cluster homogeneity. We then present a repulsive clustering
method to solve it. The remainder of this paper is summarized
as follows. Sec. II provides the system model for the CF
mMIMO, then in Sec. III, we formulate the pilot assignment
problem and propose the repulsive clustering based pilot
assignment. The numerical results are presented in Sec. IV,
and we conclude the paper in Sec. V.

II. SYSTEM MODEL

We consider a typical CF mMIMO system, where M
geographically distributed APs equipped with single antenna,
coherently serve K single-antenna UE (K << M ), as ex-
emplified in Fig. 1. All APs are connected to a CPU by an
unlimited error-free fronthaul channel. The channel coefficient
gmk between the m-th AP and the k-th UE is given as follows:

gmk = β
1/2
mk hmk, (1)

where {βmk} indicate the large-scale fading (LSF) coefficients
(i.e., pathloss and shadowing), and {hmk} represent the small-
scale fading coefficient which are assumed to be indepen-
dent identically distributed (i.i.d.) normal random variables
CN (0, 1).

A. Uplink Pilot Training

We assume that there are only τp mutually orthogonal
pilot sequences with length τp each represented as a column
φ ∈ Cτp×1 of a matrix Φ, for which we have ‖φHpkφpk′‖ = 1
if pk = pk′ , and ‖φHpkφpk′‖ = 0, otherwise. The number
of available pilots is independent of K and is limited due
to the natural channel variation in the time and frequency
domains [11].

In the uplink pilot training phase, all UEs simultaneously
transmit their pilots. The m-th AP receives

ypm =
√
τpρp

K∑
k=1

gmkφ
H
pk

+ npm, (2)

where ρp is the normalized Signal-to-Noise Ratio (SNR) of
a pilot sequence with respect to noise power, and npm ∼
CN (0, 1) represents the additive thermal noise.

As shown in [1], the effective channel coefficients between
UE k and AP m can be estimated employing Minimum Mean
Square Error (MMSE) estimator as follows:

ĝmk=cmk

(√
τpρpgmk+

√
τpρp

K∑
k′ 6=k

gmk′φ
H
pk
φpk′ +φpkn

p
m

)
,

(3)
where

cmk ,
√
τpρpβmk

τpρp
∑K
k′=1 βmk′

∣∣φHpkφpk′

∣∣2 + 1
. (4)

Fig. 1: A CF mMIMO system, where M distributed APs
jointly serve K UEs (K << M ).

The mean-square of the estimated channel vector ĝmk is

γmk , E
{
|ĝmk|2

}
=
√
τpρpβmkcmk. (5)

B. Uplink Data Transmission

In CF mMIMO, all APs and UEs use the same time-
frequency resources to transmit data. In the uplink, AP m
receives

yum =
√
ρu

K∑
k=1

gmk
√
ηkqk + num, (6)

where qk is the signal transmitted by UE k with power
E
{
|qk|2

}
= 1, while η ∈ [0, 1] indicates the power con-

trol coefficient, ρu denotes the normalized uplink SNR and
num ∼ CN (0, 1) is the additive noise at receiver.

The Maximum Ratio (MR) combining scheme can be
applied to decode the desired signal from a certain UE k. AP
m sends ĝ∗mky

u
m to the CPU for data detection. The CPU com-

bines all the received signal for UE k as: ruk =
∑M
m=1 ĝ

∗
mky

u
m.

The signal then can be decomposed at the CPU as follows, as
shown in [1]:

ruk =
√
ρuηkqkE

{
M∑
m=1

gmkĝ
∗
mk

}
︸ ︷︷ ︸

DSk

+
√
ρuηkqk

(
M∑
m=1

gmkĝ
∗
mk − E

{
M∑
m=1

gmkĝ
∗
mk

})
︸ ︷︷ ︸

BUk

+
√
ρu

M∑
m=1

K∑
k′ 6=k

√
ηk′gmkĝ

∗
mk′qk′︸ ︷︷ ︸

CPIk

+ĝ∗mkn
u
k ,

(7)

where DSk, BUk and CPIk denoted the desired signal (DS),
beamforming uncertainty (BU) and co-pilot interference (CPI),
respectively.
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The achievable uplink rate for the UE k can be calculated
as (8), shown at the top of the next page.

III. MAXIMALLY DIVERSE CLUSTERING FOR PILOT
ASSIGNMENT

A. Problem formulation

An efficient pilot assignment mechanism should maximize
the number of effectively estimated channels between the UEs
and the APs. Due to the coherent nature of the transmissions
in CF mMIMO systems, data can still be potentially detected
in the presence of multiple imperfectly estimated channels. So,
as in CF mMIMO the ultimate goal is increasing the rate for
the UEs, the pilot assignment can be formulated as an uplink
rate maximization problem, i.e.,

max
p

K∑
k=1

Ruk

s.t. p = {p1, ...pK}
φ ∈ Φ, ∀k ∈ {1, . . . ,K}.

(9)

B. Proposed Scheme

Considering that the distance between UEs has a signifi-
cant impact on co-pilot interference, to mitigate the effects
of pilot contamination an efficient pilot assignment policy
should assign the same pilot p to UEs in a repulsive way,
i.e., to the UEs that are geographically far apart or have
fewer common serving APs. Hence, we formulate the pilot
assignment as a maximally diverse clustering problem, where
the data points (UEs) that are assigned to the same cluster have
high ”dissimilarity”, but can be similar to the members from
different clusters. To solve the problem, we then proposed
a repulsive clustering scheme, that is opposed to typical
clustering algorithms which put homogeneous data points in
the same clusters. Note that, the inter-cluster similarity is
also essential to ensure the fair distribution of data points in
clusters.

Let us consider X as a binary cluster association (pilot
assignment) matrix, where xk,p = 1 if UE k belongs to cluster
(pilot) p, and xk,p = 0 otherwise. So the repulsive clusters can
be obtained by solving the following problem:

max
X

τp∑
p=1

K−1∑
k=1

K∑
k′=k+1

xk,pxk′,pfr(k, k
′)

s.t.
τp∑
p=1

xk,p = 1, k ∈ {1, ...K}

⌊
K

τp

⌋
≤

K∑
k=1

xk,p ≤
⌊
K

τp

⌋
+ 1, p ∈ {1, ...τp}

xk,p ∈ {0, 1}, k ∈ {1, . . . ,K} ;

(10)

where fr(k, k
′) is a customized function that measures the

diversity/repulsion score for k and k′ data points (UEs). The
first constraint guarantees that each data point is assigned to
one cluster and the second constrain forces the clusters to
have similar size. The second constraint is important because

it keeps inter cluster similarity high. This repulsion function
can be a predefined static function, i.e., Euclidean distance,
or can be parameterized and then learned by, e.g., neural
networks. The second approach is favorable as a sophisticated
pilot assignment should consider not only the physical location
of the UEs but also other parameters like AP locations and
their density.

Repulsive clustering has already been considered in the
literature under different names: anticlustering [12], [13], and
maximally diverse grouping problem [14]. Typically this type
of problem is NP-hard, but applying some relaxations can
be solved by integer programming [15]. Here, we present
Algorithm 1, a simple heuristic yet efficient algorithm to find
a feasible (but not necessarily optimal) solution to the the
repulsive clustering problem. This algorithm first randomly
assigns data points to different clusters and then iteratively
swaps the UEs among clusters as long as it improves the
overall repulsion score.

Algorithm 1 A Heuristic Algorithm for Repulsive Clustering
Input: Number of clusters (pilots) τp, Set of UEs K
Output: Pilot assignment vector p

Randomly divide K UEs into τp equal-sized clusters C,
while Performance is improving do

for C1, C2 ∈ C do
for u ∈ C1 and w ∈ C2 do

if exchanging clusters of u and w increases the
overall diversity measure as given by (10) then

Swap the clusters of u and w,
end if

end for
end for

end while
for p = 1 : τp do

Assign pilot φp to UEs in cluster p
end for

IV. NUMERICAL RESULTS

A. Simulation setup

Let us consider M APs and K UEs that are independently
and uniformly distributed in a 1 × 1 km2 square area. We
adopt the wrap-around technique to avoid boundary effects at
the edge and simulate network behavior in an unlimited area.
The 3GPP Urban Microcell model [16] is used to compute the
large-scale propagation conditions like path loss and shadow
fading. Noise power is calculated by Pn = BkBT0W , where
B = 20 MHz is the bandwidth, kB = 1.381×10−23 (Joule per
Kelvin) denotes the Boltzmann constant, T0 = 290 (Kelvin)
is the noise temperature and W = 9 represents the noise
figure. The transmission powers of the uplink pilot and the
uplink data are set to ρp = 100 mW and ρu = 100 mW,
respectively. The channel estimation overhead has been taken
into account for defining the per-user uplink throughput as
Tuk = B

1−τp/τc
2 log 2(1 + SINRuk), where τc = 200 samples.

The 1/2 in the above equation is due to the co-existence of
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Ruk = log2

1 +
ρuηk

(∑M
m=1 γmk

)2
ρu
∑K
k′ 6=k ηk′

(∑M
m=1 γmk

βmk′
βmk

)2 ∣∣φHpkφpk′

∣∣+ ρu
∑K
k′=1 ηk′

∑M
m=1 γmkβmk′ +

∑M
m=1 γmk

 (8)
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Fig. 2: Cumulative distribution of the per-user uplink through-
put for different pilot assignment strategies for a small-scale
scenario, M = 50, K = 12 and τp = 3.

the uplink and downlink traffic. We also employed max-min
power control [1] to further improve the sum throughput.

In this paper we consider the Euclidean distance for the re-

pulsion function as fr(Uk, Uk′) =

√∑|F |
i=1(Uk[i]− Uk′ [i])2,

where F is the feature set (e.g. geographical coordinates) of
the UEs. The definition and analysis of more sophisticated
repulsive functions are left to future work.

B. Result and discussion

The CF mMIMO systems aim to provide a uniform service
to all the UEs regardless of their physical location. So, the
per-user throughput is used to evaluate the performance of
the pilot assignment algorithms. The result is compared with
the random and greedy pilot assignment from [1] and Oracle
pilots assignment, where there is no pilot contamination, i.e.
CPIk = 0 in (7). The R-package introduced in [12] is used to
optimally partition UEs into diverse groups (optimal repulsive
clustering).

As the time complexity of exhaustive search and optimal re-
pulsive clustering exponentially grows by the number of UEs,
calculating their performance for large Ms is not possible.
Fig. 2 shows the Cumulative Distribution Function (CDF) of
the per-user uplink throughput for a small-scale scenario, for
the sake of comparison. As seen in the figure, the method
outperforms the random and greedy pilot assignments and
basically achieves the same (optimal) performance of the
exhaustive search, but with far less complexity.

Fig. 3 shows the cumulative distribution of the per-user
uplink throughput for different pilot assignment strategies for
M = {100, 200, 300}. The superiority of the proposed scheme

Fig. 3: Cumulative distribution of the per-user uplink through-
put for different pilot assignment strategies, K = 40 and
τp = 10.

M Random Greedy Repulsive Oracle
100 3.5 4.1 5.3 5.9
200 6.3 6.9 7.9 8.4
300 7.9 8.9 9.9 10.3

TABLE I: 95th percentile of the per-user uplink throughput
[Mbits/s] for different numbers of APs, Here, K = 40 and
τp = 10.

against other approaches by a high margin is evident from the
figure. The decreasing gap between the repulsive and Oracle
pilot assignment by increasing the number of APs shows the
robustness of our approach against density.

Tab. I shows the 95th percentile of the per-user throughput
extracted from Fig. 3. Our method, for M = 100, increases the
95th percentile of the per-user throughput by 1.75 Mbps (33%)
and 1.18 Mbps (22%) in comparison to random and greedy
assignments, respectively. The improvements for M = 300
are 1.93 Mbps (20%) and 0.92 Mbps (9%). Compared to the
situation without pilot contamination, our method successfully
reaches 89% to 96% of the 95th percentile of the per-
user throughput of Oracle pilot assignment, which is a great
success.

Fig. 4 illustrates the 95th percentile of the per-user uplink
throughput of different pilot assignment schemes against the
number of UEs. It can be seen from the figure that by
increasing the number of UEs in the network, the throughput
for most of the UEs decreases, but the reduction speed varies
for different approaches. The increasing gap between the
proposed and other approaches shows the superiority of our
system. For example for K = 60, our method improves the
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Fig. 4: 95th percentile of the per-user uplink throughput for
different numbers of UE, M = 100 and τp = 10.
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Fig. 5: 95th percentile of the per-user uplink throughput for
different numbers of UE, M = 100 and K = 40.

95th percentile of the per-user throughput by 1.8 Mbps (38%)
and 1.3 Mbps (25%), comparing to the random and greedy
approaches, respectively. Also, the gap between the proposed
and the Oracle pilot assignment scheme grows much slower
than for the two other methods, which means that increasing
K does not heavily affect our system.

The 95th percentile of the per-user uplink throughput
against the number of pilots (τp) for different pilot assignment
schemes is presented in Fig. 5. The proposed approach always
performs better than the greedy and random pilot assignments.
As can be seen in the figure, increasing the number of pilots
will improve the performance for the majority of the UEs
only up to a certain point, and reduces afterward. This shows
the necessity of finding the optimal number of pilots, a study
which is outside the scope of this paper and is left for future
research.

V. CONCLUSION

In this paper, we proposed a repulsive clustering based pilot
assignment for CF mMIMO systems. We formulated the pilot
assignment as a maximally diverse clustering problem and
solved it by a repulsive clustering scheme. Numerical results
show the effectiveness of the proposed scheme compared
to the conventional random and greedy pilot assignment. In
future works, we will expand our approach by replacing the
Euclidean distance with more sophisticated and parameterized
repulsion functions, i.e., Deep Neural Networks (DNNs) that
consider different networking factors such as AP locations, and
the density of UEs and APs. Another extension will consider
pilot assignment jointly with pilot power control, which can
further improve the channel estimation performance. The
scalability of different pilot assignment strategies is another
factor that should be considered in future research.
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