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Abstract—Hierarchical Rate Splitting (HRS) schemes proposed
in recent years have shown to provide significant improvements
in exploiting spatial diversity in wireless networks and provide
high throughput for all users while minimising interference
among them. Hence, one of the major challenges for such HRS
schemes is the necessity to know the optimal clustering of these
users based only on their Channel State Information (CSI). This
clustering problem is known to be NP hard and, to deal with
the unmanageable complexity of finding an optimal solution, in
this work a scalable and much lighter clustering mechanism
based on Neural Network (NN) is proposed. The accuracy and
performance metrics show that the NN is able to learn and
cluster the users based on the noisy channel response and is able
to achieve a rate comparable to other more complex clustering
schemes from the literature.

Index Terms—User grouping, latency reduction, machine
learning, MIMO.

I. INTRODUCTION

Multi-antenna radio technologies have shown to enhance
spectral efficiency while ensuring connectivity to a large
number of devices. Different encoding schemes such as Dirty
Paper Coding (DPC) have been designed to achieve the multi-
antenna channel capacity [1]. However, due to the high com-
putational complexity as well as the need for precise Channel
State Information (CSI), there has been much focus of research
on sub-optimal solutions which combine Superposition Coding
(SC) and spatial processing such as Non-Orthogonal Multiple
Access (NOMA) [2]. Additionally, as these mechanisms tend
to fully decode interference, the uncertainty over CSI directly
affects interference cancellation among different users. Hence,
the authors of [3] have recently proposed Rate Splitting
Multiple Access (RSMA) as a non-orthogonal transmission
scheme that partially decodes interference and partially treats
it as noise thus further improving multiplexing gains. For 1-
layer Rate Splitting (RS), the message intended to each user
is divided into a common (sc) and private (sp) parts encoded
separately. In order for this transmission scheme to work, it
is necessary to ensure that every user perfectly decodes the

The authors’ affiliations and emails are as follows:
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common message. This is often tackled by allocating a larger
fraction of the total power to the common message. In the
presence of a large number of receivers, this condition limits
the total rate by the minimal common rate achieved in the
whole system1. Hence, in the presence of several users, the
power assigned to each sp is reduced, leading to a degradation
in communication rate.

In these conditions, relying on multiple common streams
(generalised rate splitting) leads to higher multiplexing gains,
but at the cost of high complexity at the decoder caused
by the several layers of Successive Interference Cancellation
(SIC) [3]. To tackle the increasing complexity of generalised
RS while having small loss in multiplexing, the authors
in [4] consider a 2-layer Hierarchical Rate Splitting (HRS)
transmission mechanism. In this scenario, users are considered
to be divided into G groups and required to decode three
messages: two common messages and a private message. One
of the common messages (outer common - soc) is encoded
using a codebook shared among all the user while the other
one (inner common - sic,g) is encoded by a codebook share
only among users in a specific group. But when the groups
are orthogonal, i.e. the users are sufficiently separated spatially,
optimal communication happens when inter-group and intra-
group interference are reduced to a level that it can be
completely distinguished from the intended signals.

But, to minimise the interference and maximise the rate
using HRS, the Base Station (BS) is required to know what can
be referred to as the optimal clustering scheme, i.e., the one
that maximises the total communication rate. Unfortunately,
finding this optimal clustering scheme is an NP hard problem
which often requires an exhaustive search. Thus, it becomes
extremely hard to come up with an optimisation mechanism
that maximises the communication rate using HRS while also
considering the clustering options as an optimisation variable.
Hence, in this work, we propose a learning mechanism capable
of directly learning (or approximating) the optimal clustering
option from the imperfect CSI.

II. SYSTEM MODEL

Consider a downlink transmission scenario where N single-
antenna user equipment (UEs) receive messages from a base
station (BS) over a spatially correlated Rayleigh-fading chan-
nel. We further assume this BS to be equipped with an antenna

1This happens regardless of the number of antennas at the transmitter.
Instead, this is a consequence of power allocation to reduce interference
among different users.
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with M isotropic antenna elements. Moreover, let these UEs
be partitioned into G ≥ 1 disjoint clusters. So, the signal
y ∈ CN received by all the users is given by

y = HHx + n (1)

where, H = [h1, . . . ,hN ]T ∈ CM×N contains the stacked
channels of all the k = {1, . . . , N} UEs, n ∼ NC(0, IN ) is
an additive white Gaussian noise vector and x ∈ CM is the
combined signal

x =
√
pocwocsoc +

G∑
g=1

Bg

(√
pic,gwic,gsic,g +

√
pgkWgsg

)
(2)

where poc, pic,g and pgk are the power allocated to the outer
common message soc ∈ C, inner common messages sic ∈
CG and the private messages sg ∈ CNg , respectively. Bg ∈
CM×bg is the group outer precoder designed from the gth
group channel’s second order statistics and dependent on the
integer design parameters bg rank of the channel covariance
matrix. By knowing the UEs that belong to the gth cluster,
the matrix Hg = [hg,1, . . . ,hg,Ng

]T ∈ CM×Ng contains the
stacked channels of all the Ng UEs that belong to the gth
cluster. The downlink fading channel hg,k ∈ CM associated
to the kth user of the gth class can be factored out as

hg,k = R
1
2
g g = UgΛ

1
2
g gk (3)

where Rg ∈ CM×M is the channel correlation matrix, Ug ∈
CM×M a unitary matrix containing its eigenvectors, Λg ∈
CM×M a diagonal matrix with its associated eigenvalues and
gk ∈ CM has Gaussian independent and identically distributed
(i.i.d.) entries with zero mean and unit variance which describe
the complex path gains.

In principle, the covariance matrices are directly dependent
on the angular response of the channels [2]. Unfortunately,
in a more realistic environment, due to limited feedback, the
BS only observes an imperfect estimation of the channel (3).
Following [5], we model this imperfection as the sum of a
channel and a noise generated from the same subspace

ĥg,k = UgΛ
1
2
g ĝk = UgΛ

1
2
g

(√
1− τ2gk + τzk

)
(4)

where zk has i.i.d entries and τ ∈ [0, 1] indicates the quality
of the instantaneous channel. For instance, τ = 0 leads to a
perfect channel estimation, i.e., ĥg,k = R

1
2
g gk while τ = 1

leads to an uncorrelated channel in the subspace spanned by
Ug , i.e., ĥg,k = R

1
2
g zk for uncorrelated gk and zk.

A. HRS Transmission Mechanism
HRS transmission design is defined based on the combined

transmission signal x from (2). To determine the transmission
signal x, we obtain the precoder Bg following [4], [5], so
that the group effective channel H̃H

g = ĤH
g Bg ∈ Cbg×Ng

represents the projection of Ĥg onto the bg–dimensional
subspace orthogonal to the r∗ =

∑G
l 6=g rg singular vectors

associated to the rg largest singular values of each of the
interference groups. In order to distinguish all the Ng users
in the group we must have Ng ≤ bg , i.e., enough degrees

of freedom in the bg–dimensional subspace. Unfortunately, it
is not possible to choose bg and rg indiscriminately large as
one constrains the growth of the other. Specifically, as there
exists at most M singular vectors at each group, we have that
Ng ≤ bg ≤M − r∗. Consequently, a large number of groups
leads to less freedom on the choice of both bg and rg .

Moreover, woc, wic,g and wgk = [Wg]k are the unit norm
precoders associated to the instantaneous outer common, inner
common and private messages, respectively. We can design

Wg = ξg

(
H̃gH̃

H
g + εIbg

)−1
H̃g , given a total transmission

power P , as a Regularized Zero Forcing (RZF) precoder to
allow distinguishing between the Ng users within the gth
group by reducing the interference among the private messages
in this group [5]. The parameter ξg is the power normalisation
factor which normalizes ||Wg||2 to the unit. Likewise, ε is also
a normalisation parameter. Similarly, wic,g = ξic,g

∑Ng

k=1 wgk

is the equally weighted Matched Beamforming (MBF) built
as a linear combination of the private precoders of the gth
group where ξic,g is a normalisation parameter. Finally, the
outer common precoder woc = ξoc

∑G
g=1

∑Ng

k=1 Bgh̃gk is also
designed as a weighted MBF, but to handle inter-group power
leakage where ξoc is a normalisation paramater. Notice that
it is essential to reduce inter-group interference in order to
guarantee communication. Specifically, when group leakage
is completely nulled out, there is no need for woc and
communication happens over G parallel 1-layer RS streams.

To allocate power among the different messages, we further
design two parameters α, β ∈ (0, 1]. The first one α represents
the fraction of the total power P allocated to the outer common
message. And the latter, the fraction of the remaining power
allocated to the inner common message. Combining these, we
have poc = αP , pic,g = (1−α)βP

G and pgk = (1−α)(1−β)P
Ng

. In
this work we perform a brute force search to find the optimal
α and β for every channel realisation.

As mentioned above, at the receiver side, the kth user
associated to the gth group decodes its message in a 2-
step successive interference cancellation fashion. In the first
step, the user decodes the outer common message (soc)
and removes it from the received signal. The group’s inner
common codeword is then decoded after applying SIC. After
successfully decoding both common messages, each private
message is extracted by considering all other private messages
as interference. As a result, the Signal-to-Interference Plus-
Noise Ratio (SINR) to each of these messages is written as

γocgk =
poc|hH

gkwoc|2

1 + Igk
(5)

γicgk =
pic|hH

gkwic,g|2

1 + Igk − pic|hH
gkwic,g|2

(6)

γpgk =
pgk|hH

gkwgk|2

1 + Igk −
(
pic|hH

gkwic,g|2 + pgk|hH
gkwgk|2

) (7)
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where

Igk =

G∑
l=1

pic,l|hH
gkBlwic,l|2 +

G∑
l=1

Ng∑
k=1

plk|hH
gkBlwlk|2

is the combination of all interference leaked from other users
and groups. Finally, we can describe the achievable rate as
the combination of the smallest achievable outer common rate
among all users Roc = min

gk
log2(1 + γocgk), the minimal inner

common rate per group Ric =
∑G
g=1 min

k

(
log2(1 + γicgk)

)
and the sum of the rate achievable at all private messages
Rp =

∑G
g=1

∑Ng

k=1 log2(1 + γpgk). Then the total rate is the
sum of these components, i.e, R = Roc +Ric +Rp.

III. USER CLUSTERING AND DATASET DEFINITION

As it becomes evident from the discussion above, and
further supported in our results, choosing an appropriate clus-
tering is crucial to take full advantage of two-tier precoding
mechanisms, such as HRS [4], [5]. One can rely on extensive
search in order to find the optimal clustering mechanism.
However, this is an NP hard task as the number of ways that
a set can be partitioned into nonempty sets is given by the
Bell number which grows almost exponentially with N , i.e.,
the number of elements in the set. Moreover, in our scenario,
many of these partitions lead to vanishing communication rates
due to high interference. Therefore, in this work, we rely
on (possible suboptimal) clustering options obtained from an
agglomerative hierarchical clustering mechanism [6].

A. User Clustering

To devise the clustering mechanism, we define a bottom up
approach where the objective is to combine clusters (groups
of users in the wireless network) according to their similarity.
Initially, each user is associated to a singleton cluster. At
each step of the hierarchical clustering algorithm, the pair of
users/clusters with highest similarity (according to a criterion
discussed later) is then merged. As a result, after each merge
we obtain a new clustering option and evaluate the rate
achieved considering this new option. This process continues
until we have evaluated all levels in the hierarchy. Notice that
in this agglomerative mechanism there exist only N + 1 (total
number of users plus one) possible clustering options, one for
each level in the hierarchy. These, however, are often relevant
clustering options as each cluster only contains elements that
are particularly similar to each other.

In [6], we consider the similarity measure between two
channel matrices based on how close the principle angles of
the subspaces spanned by their column-spaces are. Specif-
ically, for two clusters of size Nk and Nj , we take the
projection-Frobenius (PF) similarity

sk,j =
tr(P̂kP̂j)

min(Nk, Nj)
, (8)

where P̂j is the projection matrix given by,

P̂j = Ĥj(Ĥ
H
j Ĥj)

−1ĤH
j (9)

which describes the first Nj left singular vectors of the kth
group of channels. Moreover, to improve clustering results for
Nj 6= Nk, we follow a statistical analysis of the quantity in
(8) and further define the normalised similarity measure

ŝk,j =
sk,j − ηk,j

σk,j
(10)

based on its asymptotic mean ηk,j and variances σ2
k,j defined

as in [6]. However, this normalisation step is only possible for
M > Nj +Nk, otherwise, we follow the projection-Frobenius
similarity described in (8).

B. Dataset Definition

We design the dataset used for this work by devising channel
matrices from (4) and clustering them according to the scheme
described above. We consider four possible covariance matri-
ces to which channels are randomly associated. Consequently,
for different samples, we might obtain a different number of
users associated to a specific covariance matrix. Notice that,
this is not a cluster assignment, but merely a way to generate
random channels. These covariance matrices are obtained by
considering the azimuth angles θg = −π2 + π

3 (g − 1) and the
constant angular spread ∆g = π

6 . Moreover, we further assume
the BS to be equipped with a Uniform Circular Array antenna.

Concretely, we design 3 different configurations based on
the choices of the number of antennas at the BS: 1) N > M , 2)
N = M and 3) N < M . Moreover, we evaluate these configu-
rations for two different system loads, based on the number of
users N ∈ {8, 12}. Specifically, we have M ∈ {6, 8, 12} for
N = 8 and M ∈ {6, 12, 16} for N = 12. As a result, we have
6 different scenarios. For each these we generate S = 10.000
random samples, each sample containing both imperfect and
perfect CSIT of equal size N ×M and the clustering scheme
that maximises the rate based on the hierarchical clustering
mechanism. As a result of this randomness, for each scenario
we obtain more than G∗ = 200 possible clustering options,
thus, leading to very imbalanced datasets. To diminish this
effect, for each scenario, we sub-sample the data such that only
relevant classes are left, i.e., we discard classes that achieve
less than 25% of the average rate of the scenario and have
less than 50 samples. Moreover, to further balance the data,
we crop the maximum number of samples in each class to be
at most to 200. As a result, for each scenario, we still obtain
an imbalanced dataset with approximately G∗ = 50 classes,
each containing at least 50 samples and at most 200 samples.

Finally, to compensate for this drop in the number of
samples, we further augment the dataset of each configuration
by randomly shuffling users that belong to the same cluster.
This is a natural extension of this dataset as clustering should
be indifferent to the ordering of the users.

IV. MACHINE LEARNING MODEL AND TRAINING

We solve the classification problem presented in the previ-
ous section by designing a shallow neural network. We used
the Keras library, so we describe the layers with their notation
[7]. For each scenario, we divide our dataset into training,
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validation and test sets in a proportion of 80/10/10. During
the training procedure, we use the validation set to tune the
corresponding hyper-parameters. Our model is defined as a
shallow neural network following the parameters from Table
I. The output layer consists of G∗ neurons with a softmax
activation that correspond to each cluster where G∗ is the
total number of classes in the scenario. The softmax function
in the output layer is used to obtain the probability of a user
belonging to a specific cluster and it is given by

σ(Z)g =
ezg∑G
j=1 e

zj
(11)

where Z is the input vector from the previous hidden layer, zg
the g-th element and the denominator sum is the normalisation
factor to ensure the output is into the range of [0, 1]. Then, by
selecting the maximum, we can obtain the highest probability
that users are clustered in a particular way. For the training
procedure, we use the Adam optimiser with a learning rate of
10−3, we train for 50 epochs and use a batch size of 128
samples. For our multi-class classification task, we aim to
minimise the categorical cross-entropy loss [8] given by

L(yg, ŷg) = −
G∗∑
g=1

yg log ŷg. (12)

where yg and ŷg are the groundtruth and NN score for each
class. This loss is a very good measure of how distinguishable
two discrete probability distributions are from each other. In
this context, the vector ŷ = [ŷ1, . . . , ŷg] ∈ RG∗

has entries
which represent the probability that users are clustered in
a specific manner and the sum of all entries is one. The
accuracy of a model is often defined in terms of the entry
with highest probability, this is often, called top-1 accuracy.
In our scenario, there exist several options which achieve the
(close to) maximum rate. Therefore, it is also interesting to
analyse the top-k accuracy of our model, i.e., if the desired
clustering option is among the k most probable outputs.

Finally, we emphasise that we are applying a shallow neural
network which contains only a small number of learnable
parameters. This is designed as a consequence of our devised
dataset. Recall that we have specifically defined it to be
imbalanced and with a small number of samples to each class
([50, 200]). Nonetheless, as we present below, this network
is capable of learning the relationship between the different
channel matrices and directly output the desired clustering
option that maximises transmission using HRS.

V. PERFORMANCE ANALYSIS

In this section, we evaluate the performance of the presented
Neural Network (NN) method in comparison to RS under
different scenario configurations. These numerical simulations
are carried out in a MATLAB environment. The necessary
configuration parameters are defined in Table I.

In order to validate the learning of the NN, we compare
the rate achieved using the NN predicted classes and different
RS clustering options. To perform a complete evaluation, we
determine the rate achieved by the following solutions,

TABLE I: Parameters of the Simulations

Simulation Parameter Simulation Value
Antenna Configuration Uniform Circular Array
Angular Spread (∆g) π/6

Number of Unique Distributions 4
Channel Quality (τ2) 0.4

Dominant Eigenvectors (bg = rg) bM/Gc
Channel Quality (rg) 0.4

Number Shuffling 10
Number of Neurons in NN {256, 128}

NN Learning Rate 10−3

NN Training Epochs 50
NN Training Batch Size 128

NN Input Layer Activation Function ReLu Function
NN Hidden Layer Activation Function ReLu Function
NN Output Layer Activation Function Softmax Function

NN Loss Function Categorical Cross-entropy Loss

• Hierarchical Clustering - Hierarchical Rate Splitting
(HC): The users are clustered according to the clustering
mechanism defined in Sec. III, the group with higher
communication performance is selected;

• Neural Network - Hierarchical Rate Splitting (NN): Pro-
posed NN based clustering;

• Universal Cluster (UNI): All users are clustered into one
single cluster;

• Singleton Cluster (SING): Each cluster contains only
single user.

As mentioned above, we consider three scenarios to evaluate
the clustering solutions 1) M < N , 2) M = N and
3) M > N . Hence, for N = 8, we determine the rate
achieved for M ∈ {4, 8, 12} and for N = 12, we determine
the rate achieved for M ∈ {6, 12, 16}. Then, we compare
the different clustering techniques mentioned before based on
the rate achieved. Fig. 1 shows the rate achieved for all four
clustering techniques for the different values of M and N .
Each box plot shows the rate obtained for different realisations
of the channel. The median rate is presented by a horizontal
line through box and the top and bottom of the box are the
75th and 25th percentile rate (i.e. rate achieved by 75% and
25% of the scenarios). Lastly, the extremities of the boxplot
refer to the 1% and 99% and the red plus indicators in the
boxplot denote the outlier rate values. Notice that the rate
achieved by HC-HRS and NN-HRS is approximately similar
while both clustering techniques outperform UNI and SING.
This is due to the fact that with a noisy channel, it is really
difficult to generate accurate precoders that can maximise
the rate achieved and minimise the inter-group and intra-
group interferences. Additionally, the NN-HRS only receives
the instantaneous noisy channel as an input and determines
its clustering solution while HC-HRS needs to iteratively
determine the similarity between different channels making
it considerably slower when compared to the NN solution.
Moreover, for SING, the choice of parameters bg and rg seems
to harm the performance. We recall that both parameters are
integers thus are susceptible to the trade-off between M and
G. For instance, for G = N = 8 and M = 12, there exist only
one viable option of rg , i.e., rg = bM/Gc = 1. Alternatively,
we could select four (mod(M,G)) groups to have rg = 2,
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Fig. 1: Spectral efficiency (bps/Hz) achieved for clustering
mechanisms using HRS.

but this requires further processing on the choice of these
groups. As a consequence, we obtain similar rates for N = 8
users served with M = 8 or M = 12. Similar consequences
are obtained for N = 12. Moreover, for G = N > M , we
have rg = mod(M/N) = 0 what makes impossible to derive
meaningful precoders Fig 1(a)-(b). In contrast to that, the other
three techniques, which consider clustering, do not suffer from
this trade-off between G, rg and M . Instead, even for N > M
we still achieve reasonable spectral efficiency.

Finally, we analyse the capability of the shallow NN to
learn the grouping classification task as described above. To
do so, we first analyse the accuracy of the network for class
prediction. Recall that, here, a class represents a different
clustering option. Table II presents, in percentage, the results
obtained by training different NN according to the configura-
tion parameters in Table I for different number of users (N )
and antennas in the BS (M ). The validation column contains
the final classification accuracy in the validation dataset and
indicates some learning capability in untrained data. During
our experiments we noticed that different points of the same
dendrogram might result in similar communication rates, i.e.,
there might exist different clustering options which achieve

TABLE II: Summary of Results

N / M Validation
(top-1)

Test
(top-1)

Test
(top-3)

Test
(top-5)

Test
Relative Rate

8 / 4 65.38% 65.37% 85.22% 90.48% 94.12%
8 / 8 98.3% 92.0% 96.3% 97.7% 99.0%
8 / 12 96.9% 92.2% 97.0% 98.2% 99.5%
12 / 6 71.45% 35.6% 65.62% 77.75% 89.99%

12 / 12 98.7% 86.2% 96.8% 98.9% 93.5%
12 / 16 99.18% 95.62% 98.32% 93.32% 99.77%

the same rate. Therefore, for the test dataset, we show the
top-1, top-3 and top-5 classification accuracy. Despite the fact
that performance in top-1 accuracy might be considered poor,
the top-5 results are, often, above 90%. Finally, the last row
compares the communication rate decay (in %) if using the
top-1 option from the NN. Results show that, except in the
cases where N > M , on average, the rate drops 2.5% which
is an acceptable loss when compared to the complexity of the
original problem. Moreover, we can infer from these results
that the NN is capable of learning the maximum clustering
option or clusters that approximate this option. In other words,
it is capable to learn the relationship between different users
directly from their channel matrices and cluster the users
with a high degree of accuracy for most scenarios and finally
achieve a rate comparable to more complicated similarity-
based HC-HRS.

VI. CONCLUSION

In this work, we have proposed a NN based clustering
technique that learns and clusters users based on instantaneous
noisy channel to maximise the rate achieved using Hierar-
chical Rate Splitting mechanism. The proposed technique is
defined based on a shallow NN architecture thereby making
it extremely quick to learn and cluster the users based on the
instantaneous noisy channel. The proposed technique is able
to achieve a rate comparable with current works while being
less complex compared to other techniques. Furthermore, this
also helps to investigate further complex NN structures such
as Graph NN which can learn covariances between different
users to define clustering.
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