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Abstract—Communication efficiency arises as a necessity in
federated learning due to limited communication bandwidth. To
this end, the present paper develops an algorithmic framework
where an ensemble of pre-trained models is learned. At each
learning round, the server selects a subset of pre-trained models
to construct the ensemble model based on the structure of a
graph, which characterizes the server’s confidence in the models.
Then only the selected models are transmitted to the clients, such
that certain budget constraints are not violated. Upon receiving
updates from the clients, the server refines the structure of the
graph accordingly. The proposed algorithm is proved to enjoy sub-
linear regret bound. Experiments on real datasets demonstrate
the effectiveness of our novel approach.

Index Terms—federated learning, ensemble learning, graphs

I. INTRODUCTION

Prevalence of distributed networks consisting of devices such
as mobile phones and sensors with growing computational
and storage capability enables distributing more network
computation to the edge. Federated learning has emerged
as a promising framework to train machine learning models
under orchestration of a central server while training data
remains distributed among the edge devices called clients [1].
In federated learning, a central server sends the current model
to a set of clients at each learning round. Participating clients
then compute updates of the current model based on their
local data and send these updates to the server instead of their
local data. The server then update the model. This procedure
continues until convergence. In this context, communication
efficiency is of utmost importance. To this end, clients-to-
server communication efficiency in federated learning has
been studied extensively in the context of model updates
compression, see e.g., [2], [3]. On the other hand, server-
to-clients communication bottleneck arises if the learning task
involves large model, such that the required bandwidth to
transmit the model exceeds the available bandwidth for server-
to-clients communication. For example, base stations can be
employed as an aggregating server in certain applications [4].
Often times the base station may only assign a limited portion
of available bandwidth for server-to-client communication,
while reserving most of the available bandwidth for other
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service required by users. Meanwhile, large models trained at
the central server may exceed the clients’ memory capacity.
These challenges all motivate the study of server-to-clients
communication-efficient federated learning, which is also the
focus of the present work.

Ensemble learning methods are known to be effective
for learning large-scale models, which combine several base
predictors or experts to generate more accurate ensemble model.
However, conventional ensemble learning methods (see e.g.
[5]) are not directly applicable for communication efficient
federated learning. To adapt ensemble learning to federated
setting, FedBoost has been proposed by [6], where the server
constructs a model by combining a subset of pre-trained models.
In this way, the server only needs to transmit a subset of
pre-trained models to the clients at each learning round. Pre-
trained models can be trained on publicly available data without
observing clients’ data. FedBoost imposes a budget constraint
on the number of pre-trained models that can be transmitted
to the clients; however it cannot guarantees that the budget
constraint is not violated at each learning round. Instead, it only
guarantees the expected cost of model transmission satisfies
the budget constraint. Moreover, ensemble learning techniques
has been employed in vertical federated learning [7].

The present paper studies server-to-clients communication
efficiency in federated learning. Specifically, we aim at selecting
a subset of pre-trained models to construct an ensemble model.
To this end, each pre-trained model is viewed as an expert lying
on a graph. At each learning round, the server chooses a subset
of pre-trained models based on the structure of the graph. Upon
receiving the updates from the clients, the server refines the
structure of the graph. In this context, the prediction provided
by each pre-trained model can be viewed as feedback given
by the expert. Hence, the constructed graph is named feedback
graph. The cost of each pre-trained model is proportional to
its parameter size and a budget constraint is set to transmit
the models in order to construct the ensemble model. We
develop an algorithm called ensemble federated learning with
feedback graph (EFL-FG) which selects a subset of pre-trained
models to be transmitted to clients, and guarantees the resulting
communication cost does not exceed budget constraint at each
learning round. EFL-FG is proved to enjoy sub-linear regret.
Experiments on real datasets showcase the effectiveness of
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our proposed algorithms compared with state-of-art ensemble
federated learning alternative.

II. PROBLEM STATEMENT AND PRELIMINARIES

This section introduces the problem of federated learning
with ensemble method. Let there are a set of N clients that the
server interacts with them to perform a learning task. Moreover,
X and Y denote the input space and output space, respectively
such that a data sample (x, y) ∈ X ×Y . Furthermore, there are
a set of K pre-trained models f1(·), . . . , fK(·) at the server.
Each model fk(·) : X → Y , ∀k ∈ [K] is a mapping from
the input space to the output space where [K] denotes the set
{1, . . . ,K}. At each round of learning, the server uniformly
chooses a random subset of clients to send them the current
model. The number of clients chosen by the server depends on
the available bandwidth for clients-to-server communication.
Specifically, at each learning round, the server constructs a
model using pre-trained models and send it to the chosen subset
of clients. Then, upon receiving new data samples, clients
perform the learning task using the current model received
from the server.

Let St := {(xi,t, yi,t),∀i ∈ [N ]} represents a set of data
samples observed by clients at learning round t. In this
case, the problem of federated learning can be viewed as
a function approximation problem. Specifically, given data
samples {St}Tt=1, the goal is to find the function f̂(·), such
that the difference between f̂(xi,t) and yi,t is minimized. When
the i-th client performs the learning task on the received datum
xi,t, it incurs the loss L(f̂(xi,t), yi,t) where L(·, ·) denotes
the loss function. And L(fk(xi,t), yi,t) denote the loss of each
model fk(·), ∀k ∈ [K] for the datum xi,t associated with the
i-th client. In this context, the goal of the server is to construct
the function f̂(·) using pre-trained models in a way that the
cumulative loss is minimized. In order to build the function f̂(·)
using the pre-trained models, the server employs the ensemble
method. Using the conventional ensemble method, the model
at the server is constructed as

f̂(x) =
K∑

k=1

wkfk(x),
K∑

k=1

wk = 1. (1)

The ensemble method in (1) requires that the server sends all
models to the clients. However, this may not be feasible due to
e.g., insufficient bandwidth for server-to-clients communication,
limited memory and computational capability of clients to store
all models. The present paper proposes a novel algorithmic
framework to choose a data-driven subset of models in a way
that these limitations are taken into account.

III. ENSEMBLE FEDERATED LEARNING WITH GRAPHS

The present section first introduces a disciplined way to
construct a graph based on the performance of pre-trained
models. Then, a novel algorithm is proposed to construct an
ensemble model employing a subset of pre-trained models
chosen by the server based on the graph.

Let ck be the cost incurred when the k-th pre-trained model
is transmitted. Specifically, ck can be the bandwidth required

for transmission of the k-th model to clients. Let Bt denote
the budget of the server which denotes the cumulative cost
the server can afford for transmission at learning round t, e.g.,
available bandwidth for server-to-clients communication. In
what follows, a principled algorithm to construct a graph is
proposed which assists the learner to obtain an ensemble model.

A. Feedback Graph Generation

Let Gt = (V, Et) be a directed graph at learning round t with
a set of vertices V and a set of edges Et. Each vertex vk ∈ V ,
∀k ∈ [K] represents the pre-trained model fk(·). Let wt be
a weight vector, where the k-th element wk,t is the weight
associated with the k-th model fk(·), indicating the server’s
confidence about the performance of model fk(·). At each
learning round, the server updates wt based on the observed
loss of fk(·) which will be specified later. Let Nout

k,t, ∀k ∈ [K]
be the out-neighbor set of vk. In order to construct the set
Nout

k,t, ∀k ∈ [K], the server appends nodes vj to Nout
k,t based

on both weights and costs of models such that the cumulative
cost of nodes in Nout

k,t does not exceed the budget Bt. At first,
the server append vk to Nout

k,t which means that there is a self
loop for each vk ∈ V . Let

Mk,t := {vi|∀i :
∑

j∈Nout
k,t

cj + ci ≤ Bt,

∑
j∈Nout

k,t

wj + wi ≤
∑

j∈Nout
k,t−1

wj , vi /∈ Nout
k,t} (2)

denote a set of vertices associated with vk at learning round t.
At learning round t, find

vd = arg max
vi∈Mk,t

wi,t∑
vj∈Nout

k,t
cj + ci

. (3)

the set Mk,t is then updated by appending vd to Nout
k,t. This

procedure continues until Mk,t becomes an empty set, i.e.,
|Mk,t| = 0, where | · | represents the cardinality of a set. This
means there is no more node that can be appended to Nout

k,t such
that the constraints in (2) are satisfied. Moreover, according
to (3), the server appends vd to Nout

k,t by considering the trade-
off between the performance of nodes in prior rounds and
the amount of cost that they might add to current cumulative
cost of out-neighbors of vk. When the server constructs Nout

k,t,
∀k ∈ [K], the set of edges Et can be constructed. Specifically,
(k, j) ∈ Et if vj ∈ Nout

k,t. The procedure to construct the graph
Gt is summarized in Algorithm 1. At each learning round, the
server draws one node in Gt and transmits models which are
out-neighbors of the chosen one. Then the learning task is
carried out with a subset of models which are considered as
nodes in Gt. Thus, output of the selected models can be viewed
as feedback collected from Gt, which is henceforth named as
feedback graph.

B. Ensemble Federated Learning

At each learning round t, the server selects one node in
Gt and constructs the ensemble model with out-neighbors of
the chosen node. To this end, the server assigns weight uk,t
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Algorithm 1 Feedback Graph Generation
Input:Models fk(.), weights wk,t, costs ck, ∀k ∈ [K] and
the budget Bt.
for k = 1, ...,K do

Append vk to Nout
k,t.

while |Mk,t| > 0 do
Node vk appends vd as in (3) to Nout

k,t.
Update Mk,t with respect to updated Nout

k,t.
end while

end for
Output:Feedback Graph Gt = (V, Et).

to node vk which indicates the confidence in the accuracy of
the obtained ensemble model when node vk is chosen. Then,
the server draws one of the nodes vk ∈ V according to the
probability mass function (PMF) pt as follows

pk,t = (1− ξ)
uk,t

Ut
+

ξ

|Dt|
I(vk ∈ Dt) (4)

where I(·) denotes the indicator function, ξ is the exploration
rate and Ut :=

∑K
k=1 uk,t. The set Dt denotes a dominating

set for the feedback graph Gt. A dominating set Dt of Gt is
a subset of vertices such that there is an edge from at least
one vertex in Dt to any vertex not in Dt. The PMF in (4)
constitutes a trade-off between exploitation and exploration.
Let It denote the index of the drawn node at learning round t.
Let St be a set of indices of nodes which are out-neighbors
of the chosen node vIt . In this case, the server utilizes the
weighting vector wt to construct the ensemble model using
models whose indices are in St as follows

f̂t(x) =
∑
k∈St

wk,t

Wt
fk(x) (5)

where Wt :=
∑

k∈St wk,t. Then, the server transmits the
ensemble model along with the chosen subset of pre-trained
models to all clients. Upon receiving new datum the chosen
subset of clients perform the learning task using the ensemble
model sent by the server. Then, the i-th client incurs loss
L(f̂(xi,t), yi,t) associated with the received data sample
(xi,t, yi,t). Furthermore, the i-th client computes the loss
L(fk(xi,t), yi,t), ∀k ∈ St. Then each client transmits the
losses associated with the ensemble model and the chosen
subset of models to the server. Upon receiving the losses, the
server updates wk,t and uk,t, ∀k ∈ [K]. To this end, the server
employs the importance sampling loss estimate which results
in an unbiased estimation of the incurred loss. The importance
sampling loss estimate for the k-th model can be expressed as

ℓk,t =

∑N
i=1 L(fk(xi,t), yi,t)

qk,t
I(k ∈ St) (6)

where

qk,t :=
∑

vj∈Nin
k,t

pj,t (7)

Algorithm 2 EFL-FG: Ensemble Federated Learning with
Feedback Graph

Input:Models fk(·), weights wk,t, costs ck, ∀k ∈ [K].
Initialize: wk,1 = 1, uk,1 = 1, ∀k ∈ [K].
for t = 1, ..., T do

The server generates Gt using Algorithm 1.
The server draws one node in Gt according to the pt in
(4), with out-neighbors indexed by St.
The server sends models in St and the ensemble model
to clients.
Clients compute and send back to the sever the losses
L(f̂(xi,t), yi,t) and L(fk(xi,t), yi,t), ∀k ∈ St.
The server computes the importance sampling loss esti-
mates ℓk,t and ℓ̂k,t, ∀k ∈ [K].
The server updates wk,t+1 and uk,t+1, ∀k as in (9).

end for

represents the probability of k ∈ St, where Nin
k,t denotes

the in-neighbor set of vk in Gt. In addition, define the
importance sampling loss estimate associated with incurred
loss of ensemble model when vk is drawn by the server as

ℓ̂k,t =

∑N
i=1 L(f̂(xi,t), yi,t)

pk,t
I(k = It). (8)

Using the importance sampling loss estimates in (6) and (8),
the weights wk,t and uk,t can the be updated as follows

wk,t+1 = wk,t exp(−ηℓk,t) (9a)

uk,t+1 = uk,t exp(−ηℓ̂k,t) (9b)

where η is the learning rate. The procedure that the server
sends subset of models to clients is summarized in Algorithm 2.
The algorithm is called EFL-FG which stands for Ensemble
Federated Learning with Feedback Graph. In each learning
round, clients only need to send their computed losses to the
server while they do not have to reveal the loss function L(·, ·)
and observed data samples. Specifically, in some applications
data samples (xi,t, yi,t) may include some information about
clients that they do not wish to share with the server.
Comparison with online learning. Online learning studies
problems where a learner interacts with a set of experts such
that at each learning round the learner makes decision based
on advice received from the experts [8], [9]. The learner may
observe the loss associated with a subset of experts after
decision making, which can be modeled using a feedback
graph [10], [11]. In EFL-FG, each pre-trained model is also
viewed as an expert. However, there is a major innovative
difference compared with online learning with feedback graph:
the proposed EFL-FG constructs and refines the feedback
graph to improve the performance while in online learning, the
feedback graph is generated in an adversarial manner.

C. Regret Analysis

The present subsection studies the performance of EFL-FG
in terms of cumulative regret. The difference between the loss
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incurred by the ensemble model and the loss of the best pre-
trained model in the hindsight is defined as the regret of the
ensemble model. In this context, the best pre-trained model
in the hindsight is the one with minimum cumulative loss
among all pre-trained models. Therefore, the cumulative regret
of EFL-FG can be written as

RT =

T∑
t=1

N∑
i=1

Et[L(f̂(xi,t), yi,t)]

− min
k∈[K]

T∑
t=1

N∑
i=1

L(fk(xi,t), yi,t) (10)

where Et[.] denotes the conditional expectation given observed
losses in prior learning rounds. In order to analyze the perfor-
mance of EFL-FG, we assume that the following conditions
hold:
(a1) The loss function L(fk(xi,t), yi,t) is convex with respect
to fk(xi,t).
(a2) For each (xi,t, yi,t), the loss is bounded 0 ≤
L(fk(xi,t), yi,t) ≤ 1.
(a3) The budget satisfies Bt ≥ ck, ∀k ∈ [K], ∀t.
The following Theorem presents the regret bound for EFL-FG
with respect to the best pre-trained model in hindsight.

Theorem 1. Under (a1)–(a3), the expected cumulative regret
of EFL-FG is bounded by

T∑
t=1

N∑
i=1

Et[L(f̂(xi,t), yi,t)]−
T∑

t=1

N∑
i=1

L(fk∗(xi,t), yi,t)

≤
ln(K|Nout

k∗,1|)
η

+

T∑
t=1

(
ξ(1− η

2
N2) +

η

2
(K +

1

q̄k∗,t
)N2

)
(11)

where

k∗ = arg min
k∈[K]

T∑
t=1

N∑
i=1

L(fk(xi,t), yi,t)

is the index of the best pre-trained model in the hindsight, and
1

q̄k∗,t
:=
∑

j∈Nout
k∗,t

wj,t

qj,tWk∗,t
.

Proof. see Appendix in [12].

According to (4), pk,t > ξ
|Dt| , ∀k ∈ Dt. In addition, each

node vk ∈ V is in-neighbor to at least one vertex in the
dominating set Dt. Therefore, based on (7), it can be concluded
that qk,t > ξ

|Dt| , ∀k ∈ [K] and as a result, we have 1
q̄k∗,t

< |Dt|
ξ .

If the greedy set cover algorithm (see e.g. [13]) is employed
to find a dominating set for the feedback graph Gt, EFL-FG
obtains a dominating set with |Dt| = O(α(Gt) lnK) where
α(Gt) denotes the independence number of the feedback graph
Gt [14]. In this case, if the server sets

η = O

(√
lnK

T

)
, ξ = O

(
(lnK)

3
4

T
1
4

)
(12)

in (11), EFL-FG obtains sub-linear regret of

RT = O

(
T∑

t=1

(lnK)
3
4α(Gt)T

− 1
4

)
. (13)

It is useful to point out that α(Gt) depends on the budget Bt.
Increase in Bt can result in more connected feedback graph
Gt and as a result α(Gt) decreases. Therefore, larger budget
can assist EFL-FG to achieve tighter sub-linear regret bound.
For example, when the budget is large enough such that at
each learning round t, the feedback graph Gt is a densely
connected graph as α(Gt) = O(1), the EFL-FG can achieve
regret of O((lnK)

3
4T

3
4 ). By contrast, when the feedback graph

Gt only includes self-loops, α(Gt) = K, the EFL-FG can
achieve regret of O((lnK)

3
4KT

3
4 ). The budget Bt can denote

server-to-clients communication bandwidth at round t, which
implies larger server-to-clients communication bandwidth leads
to obtaining tighter regret bound.

IV. EXPERIMENTS

We tested the performance of different ensemble federated
learning methods: our proposed EFL-FG and FedBoost [6] over
the following real data sets downloaded from UCI machine
learning repository [15]:
Bias Correction: This dataset includes 7, 750 samples of air
temperature information with 21 features such as maximum or
minimum air temperatures in the day. The goal is to predict
the next-day minimum air temperature [16].
CCPP: The dataset contains 9, 568 samples, with 4 features
including temperature, pressure, etc, collected from a combined
cycle power plant. The goal is to predict hourly electrical energy
output [17].
Energy: This dataset contains 19, 735 samples of 27 features
of house temperature and humidity conditions were monitored
with a wireless sensor network. The goal is to predict the
energy use of appliances. [18].

Consider the case where there are 100 clients performing
a regression task. The server stores 22 pre-trained models,
including kernel based regression models with 5 Gaussian
kernels, 5 Laplacian kernels, 5 polynomial kernels, 5 sigmoid
kernels and 2 feed-forward neural networks. The bandwidth of
Gaussian, Laplacian kernels, and the slope of sigmoid kernels
are 0.01, 0.1, 1, 10, 100. Also, the degree of polynomial kernels
are 1, 2, 3, 4, 5. The feedforward neural networks have 1 and
2 hidden layers respectively, where each hidden layer consists
of 25 neurons with ReLU activation functions. Each model
is trained with 10% of each dataset. Furthermore, the cost
of sending each model is considered to be the number of
parameters associated with model divided by the number of
parameters associated with the model with maximum number
of parameters. Hence, the maximum cost of sending a model
is 1. The budget for sending models is B = 3. The learning
rate η and exploration rate ξ for all methods are set to be 1√

T
.

The performance of ensemble federated learning methods is
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Table I
MSE (×10−3) PERFORMANCE AND PERCENTAGE OF BUDGET VIOLENCE.

MSE(×10−3) budget violence (%)
Algorithms Bias CCPP Energy Bias CCPP Energy

FedBoost 69.11 45.06 10.19 22.86% 13.79% 24.16%

EFL-FG 4.81 4.92 8.36 0% 0% 0%

Figure 1. MSE performance on Energy dataset.

evaluated based on mean square error (MSE) at learning round
t defined as

MSEt =
1

t

t∑
τ=1

1

N

N∑
i=1

(ŷi,τ − yi,τ )
2 (14)

where ŷi,t denote the prediction made by the i-th client at
learning round t. In order to derive dominating sets for feedback
graphs in Algorithm 2, greedy set cover algorithm is employed
[13]. Moreover, data samples are distributed i.i.d among clients.
Note that in this experiments it is assumed that clients are not
able to store their observed data in batch. Therefore, FedBoost
implementation is modified to cope with this situation for fair
comparison. Specifically, at learning round t, the i-th client
transmits its update with respect to newly observed sample
xi,t instead of the whole batch of data.

Tables I shows the MSE and budget violence performance
of different algorithms over all datasets, where budget vio-
lence indicates the proportion of learning rounds when the
instantaneous budget constraint is violated. As can be seen
from Table I, the proposed EFL-FG achieves lower MSE
compared with FedBoost. Table I shows that FedBoost violates
the instantaneous budget in at least 13% of learning rounds for
all datasets, while EFL-FG guaratees that budget constraints is
satisfied in every learning round.

Figure 1 illustrates the MSE versus learning rounds in
Energy dataset. It can be observed that our proposed EFL-
FG outperforms FedBoost. Note that both algorithms obtain
different MSE performance starting from the first learning
round since different subsets of pre-trained models are chosen
and combined by different algorithms.

V. CONCLUSION

The present paper developed a federated learning approach
to learn ensemble of pre-trained models when the server

cannot transmit all models to clients due to limitations in
communication bandwidth and clients’ memory. Specifically,
the server generates a graph at each learning round and
constructs an ensemble model by choosing a subset of pre-
trained models using the graph. This paper provided the
algorithm EFL-FG which constructs an ensemble model whose
size does not surpass a certain budget at each learning round.
We proved that EFL-FG achieves sub-linear regret. Experiments
on several real datasets reveal the merits of EFL-FG compared
with other ensemble federated learning state-of-art.
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[5] P. Bühlmann, Bagging, Boosting and Ensemble Methods. Springer
Berlin Heidelberg, 2012, pp. 985–1022.

[6] J. Hamer, M. Mohri, and A. T. Suresh, “FedBoost: A communication-
efficient algorithm for federated learning,” in Proceedings of International
Conference on Machine Learning, vol. 119, Jul 2020, pp. 3973–3983.

[7] X. Chen, S. Zhou, B. Guan, K. Yang, H. Fao, H. Wang, and Y. Wang,
“Fed-eini: An efficient and interpretable inference framework for decision
tree ensembles in vertical federated learning,” in IEEE International
Conference on Big Data (Big Data), 2021, pp. 1242–1248.

[8] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. USA:
Cambridge University Press, 2006.

[9] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “The
nonstochastic multiarmed bandit problem,” SIAM Journal on Computing,
vol. 32, no. 1, p. 48–77, Jan 2003.

[10] S. Mannor and O. Shamir, “From bandits to experts: On the value of
side-observations,” in Proceedings of International Conference on Neural
Information Processing Systems, 2011, pp. 684–692.

[11] C. Cortes, G. DeSalvo, C. Gentile, M. Mohri, and N. Zhang, “Online
learning with dependent stochastic feedback graphs,” in Proceedings of
International Conference on Machine Learning, Jul 2020.

[12] P. M. Ghari and Y. Shen, “Graph-assisted communication-efficient
ensemble federated learning,” 2022. [Online]. Available: https:
//arxiv.org/abs/2202.13447

[13] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of Operations Research, vol. 4, no. 3, pp. 233–235, Aug 1979.

[14] N. Alon, N. Cesa-Bianchi, C. Gentile, S. Mannor, Y. Mansour, and
O. Shamir, “Nonstochastic multi-armed bandits with graph-structured
feedback,” SIAM Journal on Computing, vol. 46, no. 6, pp. 1785–1826,
2017.

[15] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[16] D. Cho, C. Yoo, J. Im, and D.-H. Cha, “Comparative assessment of

various machine learning-based bias correction methods for numerical
weather prediction model forecasts of extreme air temperatures in urban
areas,” Earth and Space Science, vol. 7, no. 4, Mar 2020.
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