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Abstract—There have been several recent efforts towards
developing representations for multivariate time-series in an un-
supervised learning framework. Such representations can prove
beneficial in tasks such as activity recognition, health monitoring,
and anomaly detection. In this paper, we consider a setting
where we observe time-series at each node in a dynamic graph.
We propose a framework called GraphTNC for unsupervised
learning of joint representations of the graph and the time-
series. Our approach employs a contrastive learning strategy.
Based on an assumption that the time-series and graph evolution
dynamics are piecewise smooth, we identify local windows of
time where the signals exhibit approximate stationarity. We then
train an encoding that allows the distribution of signals within a
neighborhood to be distinguished from the distribution of non-
neighboring signals. We first demonstrate the performance of our
proposed framework using synthetic data, and subsequently we
show that it can prove beneficial for the classification task with
real-world datasets.

Index Terms—Contrastive learning, representation learning,
time series, dynamic graphs

I. INTRODUCTION

Time series constitute a challenging data type for modeling,
especially for supervised learning, due to their sparse labeling
and complexity. To address this challenge, we can employ
unsupervised methods to learn embeddings of the time series,
and thereby extract informative low-dimensional representa-
tions. These general representations of the input data, derived
without any need for labels, can be used for any downstream
task.

In the last several years, self-supervised learning (SSL) has
emerged as an effective strategy for learning representations.
One form of SSL is contrastive learning, popularized by the
SimCLR approach in [1]. One danger with self-supervised
learning is collapse, when the model learns to output similar
or even identical embeddings for all samples. Contrastive
learning avoids collapse by identifying positive and negative
training pairs. The embeddings of samples in a positive pair are

encouraged to be similar, while those of samples in a negative
pair are pushed apart.

Several approaches have emerged for contrastive learning
for time series. Contrastive Predictive Coding (CPC) [2] is
an effective strategy that first compresses high-dimensional
data into a compact latent embedding space and then uses
autoregressive models to predict the subsequent values of the
signals. It uses predictive coding principles to train the encoder
on a probabilistic contrastive loss. Franceschi et al. employ
a triplet loss in [3], which strives to ensure that a reference
time series has a representation that is close to any one of
its subseries (a positive sample) but far from negative series
(chosen at random). Temporal Neighborhood Coding (TNC)
takes advantage of the local smoothness of the signals to learn
generalizable representations for windows of a time series [4].
This is achieved by ensuring that in the representation space,
the distribution of signals that are close together in time is
distinguishable from the distribution of signals that are far
apart. TNC also takes into account the possibility that a pair
of negative samples may also be similar.

Compared to contrastive learning, non-contrastive ap-
proaches are conceptually simple, and do not need a large
batch size or a large memory bank to store negative sam-
ples. Notable approaches include Bootstrap Your Own Latent
(BYOL) [5] and Simple Siamese (SimSiam) [6]. These meth-
ods train a student network to predict the representations of
a teacher network. The weights of the latter are a moving
average of the student’s weights, or are shared with the student,
but no gradient is backpropagated through the teacher. Recent
efforts have explored the development of more effective loss
terms. For example, Variance-Invariance-Covariance Regular-
ization (VICReg) in [7] improves and builds upon the Barlow
Twins loss of [8].

Some supervised learning frameworks have considered
learning a graph structure to capture correlations in multi-
variate time series. For example, in [9], Hu et al. propose
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EvoNet, which constructs a dynamic graph from time series
data and can be used for event prediction. However, unsuper-
vised representation learning of time-series on graphs remains
underexplored in the literature.

In this paper, we propose a framework called GraphTNC for
learning joint representations of the graph and the time-series.
This procedure is designed for the setting where the underlying
states of the signals and graph change over time. This model is
also scalable to time-series with a static graph, where the graph
input at each time-step are the same. We assess the quality
of the learned representations on two datasets and show that
the representations are general and transferable to downstream
tasks such as classification.

Our contributions can be summarized as follows:
• We propose a novel encoder for learning representations

of multivariate time series data on dynamic or static
graphs, through a contrastive learning framework.

• We generalize non-contrastive learning methods from
the computer vision domain to address non-stationary
multivariate time series data.

II. PROBLEM SETTING

We consider the task of unsupervised learning of representa-
tions for time series on graphs. We denote a multivariate time
series as X ∈ RN×T where N is the number of univariate
time series, and T is the total length of the time series. A
window of fixed length w starting at time index t is contained
by the [t, t + w]−th columns of X: X[t,t+w] ∈ RN×w, and
is denoted by Xt. w is assumed to be constant so we do not
include it in the notation and only specify it in the text when
essential for clarity. Associated with the multivariate time
series, we also have dynamic graphs of N nodes whose edges
evolve alongside the time series. Each of the N univariate
time series is associated with one node in the graph. The
edges between nodes are assumed to be indicative of the
evolving correlation structure. Analogously to the windows
for the time series, we denote a window of dynamic graphs by
Gt = [Gt, . . . ,Gt+w];Gi = (V, Ei), |V| = N where each graph
Gi is associated with the state of the graph at time i. Only the
edge set E is indexed as the node set V stays constant. The goal
is to learn a representation zt ∈ Rh of a time series window
and its associated graphs (Xt,Gt): fenc(Xt,Gt) = zt, where
h is the dimension of the joint representations. In this work, we
subsequently use this representation to perform classification.

III. METHODOLOGY

We design an architecture that constructs a representation
of a window of a multivariate time series and an associated
sequence of graphs. The architecture is an encoder consisting
of two modules. In the ensuing subsections we describe these
modules and the loss function used to train the encoder.

A. Encoder fenc(Xt,Gt)

Our encoding approach can be decomposed into two main
building blocks : a) a static graph encoding module that learns
the state of the graph and its relationship with the multivariate

time series; and b) a temporal module which captures the
dynamics of the data.

a) Static graph encoding module: The purpose of this
module is to learn the relationships between the node embed-
dings and the multivariate signal at a timestep i. To do so, we
first need a representation of each individual node based on
the state of the graph Gi. This can be provided by any node
embedding function fG that takes a graph as input:

Hi = fG(Gi), Hi ∈ RN×k, (1)

where k is the dimension of the output node embeddings.
Next, we concatenate Hi with the time series of this timestep
denoted by xi ∈ RN and pass it through a neural network
to obtain ei, the final representation of the graph-signal
interaction at timestep i:

ei = NN1([vec(Hi)||xi]), ei ∈ Rd, (2)

where d is the dimension of the graph-signal interaction
representation, vec(·) is an operator that stacks the columns
of a matrix, and [·||·] denotes the concatenation of two vectors
(vec : Ra×b → Rab, [·||·] : Ra||Rb → Ra+b).

b) Temporal Module: We use a temporal-based neural
network f temp to capture the dynamic nature of the data
(Xt,Gt) and to obtain the final representation zt. The network
f temp outputs the hidden state of the next timestep si+1 ∈ Rs

based on the current hidden state si ∈ Rs and on the input at
time i. In our framework, the input is constructed of the signal
xi concatenated with the processed graph-signal interaction
ei. The final representation zt is obtained by passing the last
hidden state of the window sw through a neural network:

sti+1 =f temp([xt+i||sti||et+i]) (3)

zt =NN2(stw) (4)

We use a 1-layer graph convolution as fG and a 1-layer bi-
directional Gated Recurrent Unit (GRU) as f temp. Both NN1

and NN2 are 1-layer feed-forward neural networks (FNN).

B. Loss function

We define a discriminator D(zt, z). The objective function
is to make the probability likelihood estimation of the dis-
criminator to be close to 1 if z and zt are representations of
neighboring windows, and close to 0 otherwise. Following [4],
we view windows that are close in time as neighboring win-
dows, and use the Augmented Dickey-Fuller (ADF) statistical
test to find the neighborhood range. The neighbourhood N t is
selected based only on time series, since the underlying states
of graphs and signals are assumed to evolve together.

The loss function is defined as:

L(Xt,Gt) = −E(Xl,Gl)∼N t

[
logD(zt, zl)

]
+

E(Xk,Gk)∼N̄ t

[
(1−m) log(1−D(zt, zk)) +m logD(zt, zk)

]
(5)

where m is the probability of sampling a positive window
from the non-neighboring region N̄ t. By optimizing this
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function, representations zl = fenc(Xl,Gl) of samples from
a neighborhood (Xl, Gl) ∈ N t, can be distinguished from
representations zk = fenc(Xk,Gk) of samples from outside
the neighborhood.

IV. EXPERIMENTS

In the experiments, we evaluate the performance of our pro-
posed model on a synthetic dataset in a controlled setting, and
on a real-world dataset. Both datasets have underlying states
that change over time. Therefore, a state is associated with
each time window (Xt, Gt). The performance of the learned
representations z is evaluated by the downstream classification
task, where the states are the classification targets. Below we
describe the datasets, experiment setup and results in details.

A. Datasets

1) Synthetic data: The synthetic dataset contains a mul-
tivariate time series influenced by a dynamic graph, that is
also synthetically generated. The generation of both the time
series and the graphs is driven by an underlying state of
the time series that is modeled by a Hidden Markov Model
(HMM). In each state, the time series are generated from a dif-
ferent generative process including Nonlinear Auto-regressive
Moving Average models with different sets of parameters and
Gaussian Processes with different kernel functions, in a similar
fashion to that employed in the synthetic experiment in [4].
The features at each time step are concatenated in a vector
ft ∈ RN .
For the graph structure, each state has a different initial
random graph Gs

0 generated from an Erdős–Rényi model with
probability ps of an edge between nodes, where s is the state
number. With a probability qs = ps/10(1 − ps), Gs

t−1 adds
new edges or removes existing ones to generate Gs

t .
The time series data is generated by:

xt+1 = rAtft + (1− r)ft, 0 ≤ r ≤ 1, (6)

where At is the adjacency matrix of Gt, and r weights how
much influence the graph has on the time series.

2) EEG: EEG signals are recorded from probes connected
to brains of human subjects. The dataset, which originates
from an online data science competition1, contains 32 channels
of EEG recordings of subjects performing hand grasping and
lifting actions. Each hand action is divided into 7 states that
include: the initial movement, first touch of the object to be
lifted, start of loading phase, hand lift off, change of hands,
release and no action. The graph structure for this dataset
encodes the spatial relationship between the 32 electrode
locations. The dataset provides a map of the physical locations
of the electrode probes with respect to the brain. These probes
are arranged in a grid. We define a graph where each node
represents an electrode probe and an edge connects two probes
if they are direct neighbors on the grid. Since the graph is
static, it is repeated at each time step to fit our model. We
extract 100 signals of length 60 timesteps to train our model.

1https://www.kaggle.com/c/grasp-and-lift-eeg-detection/data
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Fig. 1: Synthetic dataset: Light blue discrete signal represents
underlying state. Continuous signals represent the N features.

TABLE I: Hyper-parameters of GraphTNC

Synthetic EEG

Graph node (feature) number N 10 32
Graph encoding size k 4 4
Graph-signal interaction size d 8 32
GRU input size (N + d) 18 64
GRU hidden size 64 64
Joint representations size h 8 32

B. Experiments Setup

1) GraphTNC vs baseline TNC: In this experiment, we
compare the classification performance of the representations
learned from time series with and without considering the
graph. For fair comparison, we use the same encoder proposed
for the baseline TNC [4] as f temp, which is a 1-layer bi-
directional GRU. In our architecture, we add a graph encoding
module fG (a 1-layer graph convolution) before the temporal
module, such that the input of f temp is the combined infor-
mation of the graph and signal. We also followed the setting
m = 0.05 in (5) from [4] which is the probability of positive
window in non-neighboring region. Detailed hyperparameters
can be seen in Table I.

For training, we use the Adam optimizer with a learning rate
of 1e−3 and a weight decay of 1e−5 and train for 100 epochs
with early stop for both datasets. As stated in Section III,
although the discriminator and encoder are learned together
during the training phase, only the encoder is required during
inference. The window size w is selected through experiments
such that it is long enough to contain information of underlying
state but not too long to span over multiple states, following
the same rationale in TNC [4].

To evaluate the quality of the representations, we use
classification as a downstream task. The classifier is a 1-
layer FNN on top of the frozen representation with h as input
dimension and S as output dimension, trained on cross-entropy
loss. We use the simple structure to reduce the impact of
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Fig. 2: Results (with 95% confidence intervals shaded) of synthetic dataset experiment with various r values from eq.(6). Left:
Accuracy results. Right: Area under precision recall curve (AUPRC). Our GraphTNC is shown in blue, baseline is in orange.

the classifier on the final results. The performance is reported
as the prediction accuracy and the area under the precision-
recall curve (AUPRC) score since AUPRC is a more accurate
reflection of model performance for imbalanced data.

2) GraphTNC vs non-contrastive learning: Throughout this
experiment, we retain our proposed encoder fenc(Xt,Gt),
and compare the performance of the GraphTNC contrastive
learning approach with two non-contrastive learning meth-
ods, BYOL [5] and SimSiam [6]. BYOL has an asymmetric
architecture where the weights θm of one encoder are an
exponential moving average of the other encoder’s weights
θ. A predictor g with weights ϕ is used in the branch with
learnable weights. SimSiam uses a predictor on one branch
and a stop-gradient operation on the other. In the original
papers [5], [6], the inputs to the two encoders are the original
image and an augmentation.

To generalize these methods to our setting, we feed
(Xt, Gt) and (Xl, Gl) ∈ N t as positive pairs to the
student and teacher networks. Non-neighborhood samples are
not required. For the projector and predictor for both BYOL
and SimSiam, we use a 2-layer FNN with size 128-128. We
then compare the performance of all unsupervised approaches
to a supervised model where the classifier and the encoder are
trained end-to-end. For the supervised setting, the architectures
of the encoder and the classifier are the same as for the
unsupervised models. We evaluate the performance of the
representations learned from different methods via the state
classification accuracy and AUPRC.

C. Experiments results and discussion

1) GraphTNC vs baseline TNC: Table II presents the state
classification results. An asterisk indicates a statistically signif-
icant difference at the 5% level between the GraphTNC and the
baseline for a Wilcoxon signed-rank test. First, we can observe

TABLE II: Classification results. The asterisk represents statis-
tically significant result using paired Wilcoxon test (p < 0.05).

GraphTNC (ours) TNC

Dataset AUPRC Accuracy AUPRC Accuracy
r = 0.1 0.86±0.03* 0.78±0.06* 0.83±0.04 0.71±0.06
r = 0.5 0.88±0.03* 0.74±0.09* 0.85±0.01 0.63±0.03
r = 0.9 0.84±0.04* 0.73±0.05* 0.81±0.04 0.61±0.02
EEG 0.54±0.02 0.92±0.02 0.54±0.02 0.90±0.03

that our encoder, which learns joint representations of the time
series and of the graphs, consistently outperforms the baseline
with significance most of the time for both the simulated data
and EEG dataset, with the same order of parameterization.
Therefore, we conclude that modeling the relation between
the features of a time series can lead to improvement in
performance.

Second, to further understand how the role of an underlying
graph influences the performance, we generate multiple syn-
thetic datasets based on different r parameter values in Equa-
tion (6). A larger r represents that the time series data is more
dependent on the graph-defined spacial filtering operation of
Eq. (6). We conduct the experiment for r ∈ {0.1, 0.5, 0.9}. We
evaluate the model performance by training different models
on 10 splits for each r value and report the AUPRC. Our pro-
posed method GraphTNC (in blue) consistently outperforms
the time series baseline TNC (in orange). This is true for
both the accuracy metric and the AUPRC. The use of both
metrics is important since it accounts for the fact that the
label distribution of the synthetic data is not always uniform.
AUPRC combines the precision and recall metrics and is
known to be a reliable metric for imbalanced datasets. Besides
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TABLE III: Classification performance of joint representations of TS and Graph learned from different frameworks.

Synthetic r = 0.1 EEG

AUPRC Accuracy Params AUPRC Accuracy Params

GraphTNC (Ours) 0.86±0.03 0.78±0.06 34k 0.54±0.02 0.92±0.02 59k
BYOL 0.73±0.10 0.56±0.10 67k 0.55±0.02 0.91±0.03 92k
SimSiam 0.74±0.10 0.57±0.10 67k 0.55±0.03 0.90±0.03 92k
Supervised 0.95±0.04 0.83±0.09 34k 0.57±0.03 0.92±0.01 60k
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Fig. 3: T-SNE visualization of the 8-dimensional learned
encoding zt of windows of simulated dataset with r = 0.1.
The colors represent the underlying state of the windows. The
top figure shows the clustering result of GraphTNC (ours), and
the bottom figure shows the results for TNC.

reporting the mean and standard deviation of the results in
Table II, we also report 95% confidence intervals in Fig. 2. The
95% confidence intervals are obtained via a non parametric
method (bootstrap). We also present a visualisation of the
encoding in Fig. 3 for r = 0.1. We can see that the GraphTNC
representations of are more clearly separated than the TNC
representations, especially for states 0 and 2.

2) GraphTNC vs non-contrastive learning: Table III dis-
plays the classification performance of the representations
obtained from the various approaches on the two datasets. The

classifier performance of GraphTNC is closer to the supervised
model compared to the two other non-contrastive learning
methods. They also have similar parameters since the end-to-
end learning framework has the same encoder as GraphTNC,
followed by a 1-layer FNN. In the EEG dataset, where the
state changes infrequently and the graph is static, BYOL and
SimSiam can achieve reasonable results. However, when the
non-stationarity increases, such as the synthetic data shown in
Fig. 1, the performance drops. Therefore, BYOL and SimSiam,
which take neighborhood samples as an augmentation are suit-
able for more stable time-series scenarios. On the other hand,
these two non-contrastive learning approaches need more
parameters for training. To conclude, our proposed GraphTNC
is an effective approach for learning representations for non-
stationary time series on dynamic graphs.

V. CONCLUSION

We have introduced an unsupervised learning approach
called GraphTNC for data consisting of multivariate time-
series on dynamic graphs. Our experimental results for the
synthetic and real-world datasets show that the methodology
is beneficial when the graphs inform or capture the dynamic
relations between features in the signals.
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