
Ensemble Link Learning for Large State Space
Multiple Access Communications

Talha Bozkus
Department of Electrical and Computer Engineering

University of Southern California
Los Angeles, USA

bozkus@usc.edu

Urbashi Mitra
Department of Electrical and Computer Engineering

University of Southern California
Los Angeles, USA

ubli@usc.edu

Abstract—Wireless communication networks are well-modeled
by Markov Decision Processes (MDPs), but induce a large
state space which challenges policy optimization. Reinforcement
learning such as Q-learning enables the solution of policy opti-
mization problems in unknown environments. Herein a graph-
learning algorithm is proposed to improve the accuracy and
complexity performance of Q-learning algorithm for a multiple
access communications problem. By exploiting the structural
properties of the wireless network MDP, several structurally
related Markov chains are created and these multiple chains are
sampled to learn multiple policies which are fused. Furthermore,
a state-action aggregation method is proposed to reduce the time
and memory complexity of the algorithm. Numerical results show
that the proposed algorithm achieves a reduction of 80% with
respect to the policy error and a reduction of 70% for the runtime
versus other state-of-the-art Q learning algorithms.

Index Terms—Markov decision process (MDP), wireless net-
works, state aggregation, Q-learning, graph learning

I. INTRODUCTION

Markov Decision Processes (MDPs) have been extensively
used to model wireless communication networks [1], [2].
As wireless communication networks become more hetero-
geneous and complex, the design and implementation of
optimal control strategies become more challenging. When
the system dynamics and cost functions are not fully known,
dynamic programming (DP) [3] cannot be employed and Q-
learning, model-free reinforcement learning (RL) algorithm,
can be used to learn the optimal policy. Recently, many
variants of Q-learning have been introduced to overcome
several performance and computational challenges such as
overestimation and underestimation bias of Q-functions [4],
[5]. In [6], neighbouring nodes share Q-functions with each
other for performance improvement. Deep Q-networks use a
neural network to approximate the Q-functions [7]. In [8],
different multiple Q-functions are combined to improve the
overall performance similar to ensemble learning.

We introduce an ensembling approach, in which the agent
learns by collecting samples from multiple structurally related
Markovian systems. To this end, we employ the co-link
graph symmetrization which capture higher-order information
between states via multiple Markov chains. We can exploit a
block-circulant approximation on the original transition graph
to characterize the structure of the co-link matrices. The
unknown probability transition matrix is learned via a small

set of collected trajectories and then used to create the co-
link matrices which will drive the behavior of the virtual
Markovian systems. As these matrices have different transition
probabilities, they offer different trajectories for exploration.
Furthermore, the special structure of the co-link matrices and
cost functions further enable a state-action aggregation method
which significantly lowers the memory complexity of the
algorithm.

The main contributions of the paper are as follows: (i) We
characterize the structure of the nth order co-link matrix based
on a block-circulant approximation. (ii) We propose a graph-
learning algorithm based on an ensembling of the Q-functions
from different, but structurally related Markov chains. (iii) We
further provide a structural state-action aggregation idea to
tackle the increasing memory complexity for large networks.
On modest-sized networks, up to 99% memory reduction
is achievable. (iv) Numerical results show that the use of
samples obtained from structurally related Markov chains
achieves 80% less average policy. In addition, the proposed
method outperforms the other existing Q-learning algorithms,
achieving a reduction of 60% in policy error and a reduction
of 70% in runtime complexity.

We use the following notation: vectors are bold lower case
(x); matrices are bold upper case (A); sets are in calligraphic
font (S); and scalars are non-bold (α).

II. SYSTEM MODEL AND METHODS

A. Markov Decision Processes

MDPs are characterized by 4-tuples tS, A, p, c}, where S
and A denote the finite state and action spaces, respectively.
We denote st as the state and at as the action taken at discrete
time period t. The transition from s to s1 occurs with the
probability paps, s1q “ pps1 “ st`1 | s “ st, a “ atq,
which is stored in the ps, s1, aqth element of the transition
probability tensor P, and a bounded average cost capsq “
ř

s1PS pa ps, s1q caps, s1q is incurred, which is stored in the
sth element of the cost vector ca, where caps, s1q is the
instantaneous transition cost from s to s1 under action a.
We focus on an infinite-horizon discounted cost MDP, where
t “ Z` Y t0u. Our goal is to solve the following optimization
problem:

747ISBN: 978-1-6654-6798-8 EUSIPCO 2022

v˚psq “ min
π

vπpsq “

«

8
ÿ

t“0

γtcat
pstq|s0 “ s

ff

, (1)

where for all s P S and at P A, where vπ is the value
function [3] under a given policy π, v˚ is the optimal value
function, and γ P p0, 1q is the discount factor. The policy π
can define either a specific action per state (deterministic) or
a distribution over the action space (stochastic) per state for
each time period. If the policy does not change over time, i.e.,
πt “ π, @t, then it is deemed stationary. There always exists
a deterministic stationary policy that is optimal given a finite
state and action space [3]. Hence, we concentrate on deter-
ministic and stationary policies herein. Dynamic programming
algorithms such as value iteration and policy iteration can be
employed to solve (1) iteratively [3].

B. Q-Learning

Dynamic programming algorithms are model-based, that
is, they require full knowledge of the system including the
transition probability function and the cost function to solve
the optimization problem. However, when the system is not
fully observable or if the state-space (or action-space) is too
large to iteratively solve (1), the model-free algorithms such
as Q-learning can be utilized [3].
Q-learning algorithm seeks to solve the optimization prob-

lem and find the optimal policy π˚ by learning the Q functions
Qps, aq,@ps, aq P S ˆ A using the update rule:

Qps, aq Ð p1 ´ αqQps, aq ` αpcapsq ` γ min
a1PA

Qps1, a1qq, (2)

where α P p0, 1q is the learning rate. In practice, ϵ-greedy
policies are used to deal with the exploration-exploitation
trade-off, i.e., with probability ϵ, a random action is taken
(exploration) and with probability 1 ´ ϵ, a greedy action,
which minimizes the Q-function of the next state is chosen
(exploitation). This balance is crucial to ensure that sufficient
information about the system is captured by visiting each state-
action pair sufficiently many times. The agent interacts with
the environment and collects samples ts, a, s1, cu to update
Q-functions using (2). The learning strategy must specify the
trajectory length (l), and the minimum number of visits to
each state-action pair (v), which can be used as a stopping
condition for the sampling operation. Q-functions converge to
their optimal values with probability one, i.e., Q w .p.1

ÝÝÝÝÑ Q˚ if
necessary conditions are satisfied [9].

C. Co-link graph symmetrization method

As graph signal processing [10] (GSP) provides compu-
tational tools for graphical systems, they are a natural tool
for MDPs described by their transition graphs. Much GSP
work has focused on undirected (symmetric) graphs [10], [11];
however, the graph associated with our network is directed.
Challenges with prior proposed GSP methods for directed
graphs [12] are computational expense and stability issues.
Thus, graph symmetrization methods are of interest. The goal
is to preserve the underlying structure of the directed graph
via a symmetric proxy. Progress has been made to capture
the directionality between nodes, the degree of nodes and the

weight of nodes [13], [14]; however, they only focus on the
influence of one-hop neighbors and do not capture longer-
range dependencies from multiple-hops. To this end, the co-
link symmetrization method [15] preserves multi-hop edge
dynamics during symmetrization.

To avoid losing information about distant node interaction in
large graphs, bibliographic symmetrization [13], [16] has been
considered, which exploits second-order node relationships.
Herein, we consider the nth order similarity matrix, denoted
by Lpnq [15]. This matrix can be expressed in a compact
summation form as:

Lpnq “

n´2
ÿ

k“0

Pn´k´1pPT qk`1 ` pPT qn´k´1Pk`1, (3)

where P is the transition matrix of a given MDP, and the
derivation of Lpnq follows from the nth order co-citation and
co-reference processes [15].

We will show in the subsequent sections that with l1
normalization, Lpnq matrices for each different n correspond
to different but structurally related transition graphs, each of
which can be used to improve the accuracy and computational
complexity of the Q-learning algorithm. As each Lpnq capture
different orders of node relationships, they can be employed
to optimize policies for different states, which allows a si-
multaneous optimization of multiple policies. This procedure
will also reduce the variance between the optimal and learned
policies, a key goal of ensemble methods. As a result, the
accuracy of learned policy is improved.

D. Wireless Network Model

We generalize the model of [16] by considering a wireless
network system with R transmitters, a single receiver, and
time-slotted communication. The action space of each trans-
mitter is A “ tSilent,Transmitu. Each transmitter has a data
buffer with size N ´1 with N ą 1. The data arrivals occur at
the beginning of each slot and follow R i.i.d. Bernoulli distri-
butions with the common arrival probability p. A packet drop
occurs when there is a new arrival and the buffer is full. Let
bt P t0, 1, . . . , N ´1u denote the buffer state. Then, we define
the buffer transition tensor B such that Bi,j,k stores the buffer
transition probability from state i to j under the action k. Each
transmitter experiences its own channel; however collisions
can occur at the receiver due to simultaneous transmissions.
We employ a generalized Gilbert-Elliot channel model, where
the evolution of the channel is modeled as a Markov chain
with M states. Let ht denote the channel state following
a discretized exponential distribution with a mean 1 (as in
[16]). The channel state is h with probability

şh`1

h
e´x dx

for h P t0, 1, . . . ,M ´ 2u and
ş8

h
e´x dx otherwise, where h

denotes the channel index, h P t0, 1, . . . ,M´1u. Similarly, we
define the channel transition matrix H such that Hi,j stores
the channel transition probability from state i to j. At any
time t P t0, 1, . . . u, the state of the system is given by the
tuple st “ pbt, htq. Thus, the transition tensor for the single
transmitter system (R “ 1) is given by: P “ B b H, where
b is the Kronecker product operator. For the multi-transmitter

748

(a) R “ 1, n “ 4 (b) R “ 2, n “ 2

Fig. 1: The gray-scaled adjacency matrices of Lpnq

system (R ą 1), the joint transition tensor is obtained by
taking the Kronecker product of P by itself R times.

We want to minimize the expected discounted cost in (1)
and find the optimal policy π˚ where the single-stage cost
function c in time slot t for a single transmitter is given as:

c “ η
bt

N ´ 1
1tat,i “ 0u ` p1 ´ ηq

ht

M ´ 1
1tat,i “ 1u, (4)

where 1p¨q is the indicator function, and the cost components
are the backlog and transmission costs, respectively, with
η P r0, 1s. Let V1 be a cost matrix of size |S| ˆ 2 storing
the cost components for each state-action pair for a single
transmitter. Then, for the multi-transmitter system (R ą 1), the
cost matrix VR is obtained by taking the Kronecker product
of V1 by itself R times. The following cost function captures
the collision effects and is added to each component of VR:

ccollision “ ζ1tat,i “ 1u1t

R
ÿ

j“1

1tat,j “ 1u ą 1u, (5)

where ζ P r0, 1s is the weight for the collision cost. Hence,
the final cost function in time slot t is obtained by adding (5)
to (4).
E. The representation of Lpnq

We herein present an approximate characterization of Lpnq

which will facilitate computation – the approximation is good
when p « 1. For clarity, we first provide results for R “ 1
and then discuss how to generalize to R ą 1. Let P0

and P1 be two matrices corresponding to the ”silent” and
”transmit” actions in P. We use the average transition matrix
P̃ “ P0`P1

2 and employ a block-circulant approximation on P̃
to derive Lpnq in (3). It can be shown that Lpnq is a symmetric
block-circulant matrix of dimensions NM ˆ NM and fully
specified by 2n ` 1 non-zero blocks of dimensions M ˆ M
per row, where at most n ` 1 of them are unique [17]. Let
tL0,L1, . . . ,Lnu be the set of unique blocks, which satisfy
Lk “ LN´k for k P t0, 1, . . . , N ´ 1u. The matrix Lpnq can
be decomposed into two smaller matrices as follows:

Lpnq “ P̂pnq b Hpnq, (6)
where P̂pnq is a N ˆN symmetric circulant matrix, and Hpnq

is the nth order similarity matrix of H from (3) [17]. It is
computationally trivial to compute Hpnq and approximate P̂pnq

using Pascal’s triangle with a low complexity [17]. For this
reason, (6) is utilized for computation of Lpnq instead of (3).

For R ą 1, it can also be shown that Lpnq is a block-
circulant matrix with p2n ` 1qR non-zero blocks per row,
where there are at most p2n`1q

R
`1

2 unique blocks, which
satisfy an analogous circulant property to that of R “ 1

case. The adjacency matrix of Lpnq with different n and R
are illustrated in Fig.1. Notice that there is a common block-
circulant structure regardless of R and n.

F. Creating multiple Markovian systems

The underlying probability transition matrix, P, is initially
unknown. However, the approximate transition probabilities
can be estimated via sample averaging. Let Pij “ pps1 “ j |

s “ iq, and vij be the number of times that the simulator
moves from state i to j. Then, the maximum likelihood
estimator of P is given as follows:

P̂ij “
vij

ř|S|

k“1 vik
, (7)

where P̂ij Ñ Pij for all i, j as vik Ñ 8 for all k.
The simulator collects samples from the unknown environ-

ment, i.e. the Markov chain of P, sufficiently many times,
and constructs P̂. Then, a block-circulant approximation on
P̂ is employed. Note that it is adequate to collect samples for
only a subset of states, representative states, which are in the
same block-row, and P̂ can be constructed using the block-
row repetitions. This structural property considerably lowers
the number of samples to estimate P̂.

The co-link matrices (Lpnq) for different Markovian envi-
ronments are then constructed employing the co-link technique
with P̂. Then, each row of Lpnq is l1 normalized, i.e.

L
pnq

i Ð
L

pnq

i
ř

j L
pnq

ij

, (8)

where L
pnq

i is the ith row of Lpnq. The normalization is
needed to make meaningful performance comparisons between
different Lpnq as the elements of Lpnq grow as a function of n
from (3). We note that this transformation (i) does not change
the block-circulant structure of Lpnq, and (ii) creates stochastic
transition matrices for Lpnq, each of which corresponds to a
different virtual Markov chain with the same states as in P.

III. LINK LEARNING ALGORITHM

In this section, we introduce the details of the proposed
algorithm (Algorithm 1). It is a model-free algorithm, thus,
the system dynamics including probability distributions and
costs are unknown. We use K different Markov chains, each
corresponding to l1-normalized Lpnq, n “ 1, 2, ...,K, where
Lp1q = P. Our aim is to learn the nth order node (or link)
relationships from different structurally related systems, and
produce a single ensemble policy π˚ with low complexity,
and the complexity (time and memory) of finding such pol-
icy increases with most of the system parameters including
l, v, |S|, |A|, R,K.

Let u P r0, 1q be the update ratio and Qpnq be empty Q
tables (of size |S| ˆ |A|) to store Q-functions @n P 1, ...,K.
We now briefly explain Algorithm 1. The stopping condition
is satisfied when each state-action pair in the Markov chain
corresponding to Lp1q is visited v times – there is no minimum
visit requirement for Lpnq for n ą 1. As n increases, the
distribution of the coefficients in each row of Lpnq becomes
more uniform, i.e. the coefficients get closer to each other

749

Algorithm 1 Link Learning

Input: l, v, u, Qpnq

Output: Qit, Qnonit, ŵ, π̂
1: Initialize w Ð 1

K1
2: while each state-action pair in Lp1q not visited v times do
3: for each n P 1, ...,K do
4: collect samples of length l, update Qpnq using (2)
5: π̂psq Ð argmina1

ř

n wnQ
pnqps, a1q

6: πnpsq Ð argmina1 Qpnqps, a1q, @n P 1, ...,K

7: wn Ð 1
|S|

ř|S|

j“1 1pπ̂pjq “ πnpjqq

8: w Ð softmaxpwq

9: Qit Ð uQit ` p1 ´ uq
ř

n wnQ
pnq

10: ŵ Ð w
11: Qnonit Ð

ř

n ŵnQ
pnq

12: π̂psq Ð argmina1 Qitps, a1q

[17]. Thus, by the time Lp1q is sufficiently explored, all Lpnq

for n ą 1 will already be visited. In 3-4, the simulator interacts
with K different Markovian environments, collects set of
samples ts, a, s1, cu from trajectories of length l independently,
and updates the Q tables for all n. In 5-6, we set the
candidate optimal policy pπ̂q to the minimizer of the most
recent weighted combination of Q-functions, and candidate
individual policies pπnq to the minimizer of the most recent
individual Q-functions. In 7, we compute the correct estima-
tion rate vector (w with wn being the nth element of w) i.e.,
wn indicates how useful the most recent samples from Lpnq

is. We then update Qit using the softmax-normalized w in 9.
Note that Qit (iterative) is obtained iteratively using possibly
different w at each iteration, yet Qnonit (non-iterative) is
constructed using only the final weight vector ŵ.

A. Structural state-action aggregation

In [4], [5], the methods suffer from high memory needs
due to storing Q-functions and state-action pair visits; this
issue is exacerbated here as we store this information for
each n P t1, ...,Ku. However, utilizing the block-circulant
representation of Lpnq and the nice structure of the cost
functions, we can strongly reduce our memory needs. We
briefly explain the idea for R “ 1, and provide an example
for R ą 1. If we look at the cost function for R “ 1, we
see that when at “ 0 and at “ 1, the cost function is only
proportional to bt and ht, respectively. Assuming the Q tables
are initialized to 0, Q-function of any state-action pair will be
directly proportional to the received cost. This implies that (i)
all states having the same bt can be aggregated in the same
group for ”silent” action, and (ii) all states having the same ht

can be aggregated in the same group for ”transmit” action. The
same idea can be applied to R ą 1 case. (All states having the
same two buffer states can be aggregated in the same group for
”silent-silent” action.) The gray-scaled aggregated Q-matrix
examples are shown in Fig.2. Although there is a collision
effect for R ą 1, it does not depend on bt or ht, and thus does
not affect the aggregation. It can be shown that for R “ 2,
the overall memory reduction is pN`Mq

2

p2NMq2
. For a network with

0 2 4 6 8
Channel state (ct)

0

2

4

6

8

Bu
ffe

r s
ta

te
 (b

t)

(a) R “ 1, action-0

0 20 40 60 80
Channel state (ct)

0

20

40

60

80Bu
ffe

r s
ta

te
 (b

t)

(b) R “ 2, action-00

0 20 40 60 80
Channel state (ct)

0

20

40

60

80Bu
ffe

r s
ta

te
 (b

t)

(c) R “ 2, action-11

Fig. 2: The gray-scaled aggregated Q-matrices

N=M=10, up to 99% memory reduction is achievable. The
reduction also increases exponentially with R,N,M .
B. Convergence

The necessary conditions for the convergence of the Q-
learning are applicable for our algorithm. We also provide the
following three preliminary results for n “ 1. The proofs are
given in [17].

1- Let ∆it
pt´1q

ps, aq “ Qit
pt´1q

ps, aq ´ Qit
ptqps, aq. Then,

|∆it
ptqps, aq ´ ∆it

pt´1q
ps, aq|

tÑ8
ÝÝÝÑ 0,@s, a.

2- |∆it
ptqps, aq| ă θps, aq, where θ is the biggest update

for a state-action pair ps, aq in the Q-learning, i.e., θps, aq “

maxttQptqps, aq ´ Qpt´1qps, aqu.
3- If there exists a constant ϕps, aq P p0, 1q such

that |Qptqps, aq ´ Qpt´1qps, aq| ď ϕ|Qpt´1qps, aq ´

Qpt´2qps, aq|,@t, then, |∆it
ptqps, aq|

tÑ8
ÝÝÝÑ 0,@s, a.

IV. NUMERICAL RESULTS

Let π˚ be the optimal policy corresponding to v˚ and
π̂ be the estimated policy from Algorithm 1. We define the
average policy error as Υ “ 1

|S|

ř|S|

s“1 1 pπ˚psq ‰ π̂psqq. The
simulations are carried out with the following parameters: N
= 10, M = 6, R = 2, |S| = 3600, p = 0.9, l = 5, v = 5, η
= 0.5, ζ = 0.1, u = 0.5, ϵ = 0.25, γ = 0.9, α is initialized
to 0.5 and decreases « 1

t , where t is iteration index. In
Fig.3, we compare the average policy error achieved using
a single Lpnqpn “ 1, ¨ ¨ ¨ 4q and our weighted approach (Qit).
Qit achieves nearly zero policy error with significantly lower
runtime because: (i) multiple cumulative costs are minimized,
and (ii) Qit employs information from all of the transitions for
Lpnqpn “ 1, ¨ ¨ ¨ 4q. Thus, we combine the effect of exploration
for different states using different Markov chains enabling the
initial sharp decrease for Qit.

In Fig.4, the average policy error performance results for
different algorithms (see Table I) across different network
sizes are given (with the same parameters), where the network
size is obtained as follows: the interval [0, 2000] is formed
by changing N,M with R “ 1, [2000, 4000] is formed
similarly with R “ 2 and so on. Since the proposed algorithm
uses different Q-functions to produce the optimal policy, only
the value-based model-free algorithms, which use the same
strategy, are employed for fair performance comparison. See
[17] for the hyper-parameters for different methods. The use
of Qit results in significantly lower performance degradation
across increasing network size. On the other hand, Qnon´it

only considers the final characteristics of different Markov
chains, and DQN does not utilize the structural properties of

750

0 500 1000 1500 2000 2500 3000 3500 4000
Time

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Av
er

ag
e

po
lic

y
er

ro
r

L(1)

L(2)

L(3)

L(4)

Qit

Fig. 3: Average policy error for different systems

0 1000 2000 3000 4000 5000 6000 7000 8000
Network size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er
ag

e
po

lic
y
er
ro
r

DQ
WQ
Q
NQ
DQN
Qnonit

Qit

Fig. 4: Average policy error for different algorithms

Simple Q (Q) (2)
Double Q (DQ) [4]

Weighted Double Q (WQ) [5]
Distributed Q (NQ) [6]

Deep Q-Network (DQN) [7]

TABLE I: Q-learning al-
gorithm and variants –
notation and citations.

r reduction Υ

1.0 « %98 0.27
0.5 « %95 0.22
0.25 « %85 0.19
0.1 « %81 0.14
0 %0 0.10

TABLE II: Memory re-
duction vs average pol-
icy error performance

the Markov chains; thus, they have inferior performances. The
performances of DQ and WQ also suggest that the use of
double estimators is not the optimal strategy.

We consider the effect of state-action aggregation. In Sec-
tion III-A, we provided the scheme for maximal aggregation;
herein we consider partial aggregation, where r is the ratio of
employed aggregation over the maximal. As shown in Table II,
there is a trade-off between the amount of memory reduction
and the average policy error. Thus, whether a higher memory
reduction or lower policy error is prioritized directly affects
the selection of r. The effect of aggregation on the policy
error performance decreases for large networks as a result of
the performance of Algorithm 1 across large networks.

The time-complexity of the proposed link-learning algo-
rithm can be shown to be « O

´

p|S||A|q
Rrv

K fpl, ϵq
¯

, where f is
a (possibly) non-monotonic function of l, ϵ. For the Q-learning
algorithm, r “ K “ 1; thus, there is a clear improvement. As
network size increases, the improvement increases due to the
running of multiple Markov chains simultaneously, reducing l
and v. The run-time is inversely proportional to the number of
simultaneous Markov chains since sufficient sampling for Lpnq

decreases as n increases due to the increasing monotonicity
in the distribution of Lpnq. Thus, sampling for Lpnq, n ą 1,
can terminate early further reducing runtime complexity. The

simulation results show that the proposed algorithm achieves
70% less runtime than the Q-learning methods given in Table
I for large networks (see [17] for further experimental results).

V. CONCLUSIONS
In this paper, we propose a graph-learning algorithm to

increase the accuracy and computational performance of the
Q-learning algorithm, using the structural properties of the
Lpnq matrices and cost matrices. The proposed algorithm
utilizes different virtual Markov chains in an adapted Q-
learning algorithm; thus, combining the different exploration
capabilities of different chains, which effectively increases the
total amount of exploration with relatively smaller complexity,
without requiring long sample trajectories and a huge number
of visit requirements. Furthermore, depending on the initial-
ization of individual Q-learning algorithms, Q-functions of
the proposed algorithm can be shown to fully converge. We
also show that the proposed algorithm performs much better
than other state-of-the-art Q-learning algorithms in terms of
accuracy and complexity.

REFERENCES

[1] S. Mao, M. H. Cheung, and V. W. Wong, “An optimal energy allocation
algorithm for energy harvesting wireless sensor networks,” in 2012 IEEE
International Conference on Communications (ICC). IEEE, 2012.

[2] M. M. Vasconcelos, M. Gagrani, A. Nayyar, and U. Mitra, “Optimal
scheduling strategy for networked estimation with energy harvesting,”
IEEE Transactions on Control of Network Systems, vol. 7, no. 4, pp.
1723–1735, 2020.

[3] D. Bertsekas, Reinforcement learning and optimal control. Athena
Scientific, 2019.

[4] H. Hasselt, “Double Q-learning,” Advances in neural information pro-
cessing systems, vol. 23, 2010.

[5] Z. Zhang, Z. Pan, and M. J. Kochenderfer, “Weighted double Q-
learning.” in IJCAI, 2017, pp. 3455–3461.

[6] J. Schneider, W.-K. Wong, A. Moore, and M. Riedmiller, “Distributed
value functions,” 1999.

[7] L. Liu and U. Mitra, “On sampled reinforcement learning in wireless
networks: Exploitation of policy structures,” IEEE Transactions on
Communications, vol. 68, no. 5, pp. 2823–2837, 2020.

[8] R. Agarwal, D. Schuurmans, and M. Norouzi, “An optimistic perspec-
tive on offline reinforcement learning,” in International Conference on
Machine Learning. PMLR, 2020, pp. 104–114.

[9] F. S. Melo, “Convergence of Q-learning: A simple proof,” Institute Of
Systems and Robotics, Tech. Rep, pp. 1–4, 2001.

[10] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Vandergheynst,
“Graph signal processing: Overview, challenges, and applications,” Pro-
ceedings of the IEEE, vol. 106, no. 5, pp. 808–828, 2018.

[11] A. G. Marques, S. Segarra, and G. Mateos, “Signal processing on
directed graphs: The role of edge directionality when processing and
learning from network data,” IEEE Signal Processing Magazine, vol. 37,
no. 6, pp. 99–116, 2020.

[12] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” 2013.

[13] V. Satuluri and S. Parthasarathy, “Symmetrizations for clustering di-
rected graphs,” in Proceedings of the 14th International Conference on
Extending Database Technology, 2011, pp. 343–354.

[14] B. He, H. Liu, X. H. Zhao, and Z. F. Li, “Weight-discounted symmetriza-
tion in clustering directed graphs,” in Advanced Materials Research, vol.
756. Trans Tech Publ, 2013, pp. 2979–2987.

[15] H. Wang, C. Ding, and H. Huang, “Directed graph learning via high-
order co-linkage analysis,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2010, pp.
451–466.

[16] L. Liu, A. Chattopadhyay, and U. Mitra, “On solving mdps with large
state space: Exploitation of policy structures and spectral properties,”
IEEE Transactions on Communications, vol. 67, no. 6, pp. 4151–4165,
2019.

[17] T. Bozkus and U. Mitra, “Supplementary proofs,”
https://github.com/talhabozkus/eusipco-proofs, 2022.

751

