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Abstract—In this paper, we propose an alternative algorithm,
which is faster and more stable, for geometrically constrained
independent vector analysis (GC-IVA) to tackle multichannel
speech separation problem. GC-IVA is a method that combines
IVA, a blind source separation method, with beamforming-based
geometrical constraints, which are defined using the spatial
information of the sources, so that it allows us to achieve high
separation performance while able to obtain the target speech
at the desired output channel. GC-IVA with auxiliary-function
approach and vectorwise coordinate descent (GCAV-IVA) is one
such method, which has the advantage that no step-size tuning is
required, the objective function monotonically decreases, and the
algorithm converges fast. However, this method requires matrix
inversion, which is computationally expensive and adversely
affects numerical stability. To address this problem, we propose
an algorithm by using the recently introduced iterative source
steering (ISS), which uses a sequence of rank-1 update. ISS does
not require matrix inversion and achieves a lower computational
complexity per iteration of quadratic in the number of micro-
phones, resulting in the proposed method being faster and more
stable than GCAV-IVA. The experimental results revealed that
the proposed method had higher source separation performance
and shorter execution time than conventional methods.

Index Terms—Multichannel blind source separation, indepen-
dent vector analysis, geometric constraints, auxiliary function
approach, iterative source steering

I. INTRODUCTION

When capturing speeches using a distant microphone, dif-
fuse noise and directional interferences are mixed during
recording and they can significantly degrade the performances
of many speech processing applications. Blind Source Sep-
aration (BSS) methods separate such observed mixtures to
provide access to the individual sources of the mixture [1]–[5].
BSS algorithms, including a variety of independent component
analysis (ICA) methods, estimate source signals using only the
observed signals based on the assumption that source signals
are statistically independent with each other.

When BSS is applied to extract specific sources from the
observed mixture signal, post-processing is usually required
to select the desired sources using additional cues, such as
speaker information or spatial information. However, it is

preferable to solve source selection jointly with source separa-
tion since the clues used for desired source selection can also
be helpful for source separation. Geometrically constrained
BSS (GC-BSS) [6]–[11] is one of such methods that exploits
spatial information to guide the demixing matrices to obtain
a signal from a desired direction. Since GC-BSS usually
separates signals using a spatial null, which is estimated on
the basis of the statistical independence of source signals,
it can work with a small number of microphones without
any training samples. Geometrically constrained independent
vector analysis (GC-IVA) [6], [9], [10] is one of the GC-
BSS method, which combines the optimization problem of
IVA [2], [3] with beamforming-based geometric constraints
derived from a prior spatial information of source signals and
the sensor geometry. Many algorithms have been proposed for
solving the optimization problem of GC-IVA, including gradi-
ent descent method [6]. Among them, GC-IVA with auxiliary-
function approach and vectorwise coordinate descent (GCAV-
IVA) [10], [11] adopts auxiliary function approach [12] and
vectorwise coordinate descent algorithm (VCD) [13], resulting
in an algorithm noteworthy in high performance, fast con-
vergence, and no requirement of step-size parameter tuning.
These characteristics make GCAV-IVA suitable for practical
applications. Furthermore, owing to the well-designed geomet-
ric constraints, GCAV-IVA can reduce the negative impact of
block permutation between the low- and high-frequency bands
in the auxiliary function-based IVA (AuxIVA) [4], [5], and
subsequently improve speech separation performance.

Despite all their advantages, the update rules of GCAV-IVA
require matrix inversion, which is computational consuming.
In addition, the matrix inversion is desired to be avoided since
it makes numerical computation unstable. Recently, iterative
source steering (ISS) has been introduced for AuxIVA to
overcome similar disadvantages [14], which updates the whole
demixing matrix with a rank-1 update. This leads to an inverse-
free algorithm and reduces the computational complexity.
AuxIVA with ISS has been demonstrated to achieve compa-
rable separation performance with the original AuxIVA while
significantly reducing computational time when the number of
microphones increases.
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Towards practical applications, in this paper, we derive
an algorithm for GCAV-IVA based on ISS to stabilize the
numerical computation and reduce computational cost, which
we call “GC-AuxIVA-ISS”. It preserves the advantages of fast
convergence and non-requirement of pre-training and step-
size parameter tuning. Experimental results show that the
separation performance of the proposed GC-AuxIVA-ISS is
stable and it can perform separation faster than conventional
methods.

II. BASELINE METHOD: GC-IVA WITH AUXILIARY
FUNCTION APPROACH AND VCD

Let us consider a determined situation where J sources are
observed by I microphones. Let xifn and yjfn denote the
short-time Fourier transform (STFT) coefficients of the signals
observed at the i-th microphone and the j-th estimated sources,
respectively. Here, f = 1, . . . , F and n = 1, . . . , N are the
indices of the frequency and frame, respectively. We denote
the frequency-wise vector representation of the observations
and the estimated sources by

xfn = [x1fn, . . . , xIfn]
T ∈ CI , (1)

yfn = [y1fn, . . . , yJfn]
T ∈ CJ , (2)

where (·)T denotes the transpose. When considering a deter-
mined case, where I = J , and a time-invariant instantaneous
mixture model, where the STFT window length is sufficiently
longer than the impulse responses between sources and mi-
crophones, the relationship between the observations and the
estimated sources can be expressed as

yfn = W fxfn, (3)

where W f = [w1f , . . . ,wJf ]
H is an I × I demixing matrix

containing demixing filters wjf = [w1jf , . . . , wIjf ]
T, and (·)H

denotes the Hermitian transpose.
IVA assumes that each frame of source follows a multivari-

ate distribution and thus dependencies over frequency compo-
nents can be exploited to solve frequency-domain permutation
alignment. The demixing matricesW = {W f}f are estimated
by minimizing the following negative log-likelihood function

LIVA(W) =

J∑
j=1

E[G(yjn)]−
F∑

f=1

log |detW f |, (4)

where, E[·] denotes the expectation operator and yjn =
[yj1n, . . . , yjFn]

T ∈ CF is the source-wise vector repre-
sentation. Here, G(yjn) is the contrast function having the
relationship G(yjn) = − log p(yjn), where p(yjn) represents
a multivariate probability density function of the j-th source
at n-th frame. One typical choice of the contrast function is to
use a spherical contract function [2]–[4], which is expressed
as

G(yjn) = GR(rjn), (5)

rjn = ||yjn||2 =

√∑
f

|yjn|2. (6)

Here, GR(r) is a function of a real-valued scalar variable r,
and || · ||2 denotes the L2 norm of a vector. By adopting the

auxiliary function approach [12], an upper bound is optimized
instead of the original objective function, which is expressed
as
LIVA(W) ≤ LAuxIVA(Σ,W)

=
1

2

F∑
f=1

J∑
j=1

wH
jfΣjfwjf −

F∑
f=1

log |detW f |.

(7)
Here, Σ = {Σjf}jf and Σjf is the weighted covariance
expressed as

Σjf =
∑
n

φ(rjn)xfnx
H
fn. (8)

Here, φ(rjn) = GR(rjn)
′
/rjn and (·)′ denotes the derivative

operator.
Now, let us consider geometric constraints [15] that restrict

the far-field response of filters estimated by IVA in a set of
directions Θ, which is described as

LGC(W) =

J∑
j=1

∑
θ∈Θ

λjθ

F∑
f=1

|wH
jfdfθ − cjθ|2. (9)

Here, Θ denotes a set including all directions to be considered,
dfθ is the steering vector pointing to the direction θ, cjθ is
a nonnegative value set for all frequency bins as constraints,
and λjθ ≥ 0 is a parameter that weighs the importance of the
constraint. Note that (9) with cjθ = 1 forces the spatial filter
to form a conventional delay-and-sum beamformer steering
in the direction θ to preserve the target source whereas a
small value of cjθ essentially creates a spatial null towards the
direction θ so that multiple constraints of spatial nulls towards
the directions of all interferences can be used to suppress all
interferences and preserve the target.

The objective function of GCAV-IVA is summarized as

L(Σ,W) = LAuxIVA(Σ,W) + LGC(W). (10)

The update rule for Σ is obtained straightforwardly by ap-
plying (6) into (8), whereas the update rule for W is derived
by embracing the idea adopted in VCD [13] that arranges the
term log |detW | with the property of cofactor expansion. The
derived update rules are summarized as follows:

Djf = Σjf +
∑
θ∈Θ

λjθdfθd
H
fθ (11)

ujf = D−1
jf W

−1
f ej , (12)

ûjf = D−1
jf

∑
θ∈Θ

λjθcjθdfθ, (13)

hjf = uH
jfDjfujf , (14)

ĥjf = uH
jfDjf ûjf , (15)

wjf =


1√
hjf

ujf + ûjf (if ĥjf = 0),

ĥjf

2hjf

[
− 1 +

√
1 +

4hjf

|ĥjf |2

]
ujf + ûjf (o.w.).

(16)
Here, ej is the j-th column of the I×I identity matrix. These
update rules are equivalent to those employed in AuxIVA when
λjθ = 0 for all j and θ. The details of the derivation are
available in [10] and [13].
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These update rules have the advantage that no step-size tun-
ing is required, the objective function monotonically deceases,
and the algorithm converges fast. However, the matrix inverse
required at each iteration is computationally expensive and
may adversely affects numerical stability.

III. PROPOSED METHOD: GC-AUXIVA-ISS

We propose a new update algorithm for GCAV-IVA based
on ISS [14], which are lower computational cost and inverse-
free. We call it GC-IVA with auxiliary function approach and
ISS (GC-AuxIVA-ISS). Instead of updating a single row of
the demixing matrix W f alternately, ISS performs a rank-1
update for the whole demixing matrix as

W f ←W f − vjfw
H
jf (17)

for j = 1, . . . , I . Here, vjf is a vector to be estimated instead
of the demixing matrix.

Plugging (17) into (10), we have

L(vjf ) = −
F∑

f=1

log |det(W f − vjfw
H
jf )|

+

F∑
f=1

I∑
i=1

{1

2
(wif − v∗ijfwjf )

HΣjf (wif − v∗ijfwjf )

+
∑
θ∈Θ

λiθ|(wif − v∗ijfwjf )
Hdfθ − ciθ|2

}
, (18)

which is the new objective function to be minimized. The
index of f is omitted hereafter for the notation simplicity. We
derive update rules for cases of i ̸= j and i = j separately.

First, when i ̸= j, we can obtain the partial derivative of
L(vj) w.r.t. v∗ij as

∂

∂v∗ij
L(vj) = −

1

2

∑
n

φ(rin)yiny
∗
jn +

1

2
vij

∑
n

φ(rin)|yjn|2

+
∑
θ∈Θ

λiθ{vij |gjθ|2 − g∗jθ(giθ − ciθ)},

(19)

where gjθ = wH
j dθ,

∑
n φ(rin)yiny

∗
jn = wH

i Σiwj , and∑
n φ(rin)|yjn|2 = wH

j Σiwj . From ∂L(vj)/∂v
∗
ij = 0, we

have

vij =

∑
n φ(rin)yiny

∗
jn + 2

∑
θ∈Θ λiθg

∗
jθ(giθ − ciθ)∑

n φ(rin)|yjn|2 + 2
∑

θ∈Θ λiθ|gjθ|2
. (20)

Next, when i = j, we can obtain the partial derivative of
L(vj) w.r.t. v∗jj as

∂

∂v∗jj
L(vj) =

1

2
(1− v∗jj)

−1 − 1

2
(1− vjj)

∑
n

φ(rjn)|yjn|2

+
∑
θ∈Θ

λjθ{vjj |gjθ|2 − g∗jθ(gjθ − cjθ)},

(21)
and equating this expression to zero, we have

1− |1− vjj |2(
∑
n

φ(rjn)|yjn|2 + 2
∑
θ∈Θ

λjθ|gjθ|2)

+2(1− vjj)
∗
∑
θ∈Θ

λjθcjθg
∗
jθ = 0. (22)

Because the first and second terms in (22) are real numbers,
the third term in (22) must satisfy

Im
[
(1− vjj)

∗
∑
θ∈Θ

λjθcjθg
∗
jθ

]
= 0. (23)

From (1− vjj)
∗ ̸= 0 and (23), we have∑

θ∈Θ

λjθcjθgjθ = 0 (24)

or

(1− vjj)
∗ = γj

∑
θ∈Θ

λjθcjθgjθ, (25)

where γj ∈ R\{0}. When (24) holds, (22) simplifies to

vjj = 1− (
∑
n

φ(rjn)|yjn|2 + 2
∑
θ∈Θ

λjθ|gjθ|2)−1/2. (26)

On the other hand, when (25) holds, we can derive a quadratic
equation in γj from (22) as follows:

1− γ2
j |βj |2αj + 2γj |βj |2 = 0, (27)

where,

αj =
∑
n

φ(rjn)|yjn|2 + 2
∑
θ∈Θ

λjθ|gjθ|2, (28)

βj =
∑
θ∈Θ

λjθcjθgjθ. (29)

By substituting the solution of (27) into (25), we have

γj =
−|βj | ±

√
|βj |2 + αj

−αj |βj |
, (30)

and

vjj = 1− β∗
j

|βj | ∓
√
|βj |2 + αj

αj |βj |
, (31)

where the ∓ sign in (31) should be positive (see Appendix
A).

In summary, when i = j, the minimization of (18) with
respect to vij gives

vjj =

1− α
−1/2
j (βj = 0),

1− β∗
j
|βj |+
√

|βj |2+αj

αj |βj | (βj ̸= 0).
(32)

After computing vj by (20) and (32), we need to update
the output signal yn and wH

i dθ by applying (17) as

yn ← yn − vjyjn, (33)

wH
i dθ ← wH

i dθ − vijw
H
j dθ. (34)

Since wH
i dθ is a scalar, these rules has lower computational

cost than that of the conventional method.

IV. EXPERIMENT

To evaluate the effectiveness of GC-AuxIVA-ISS, we con-
ducted speech separation experiments. We evaluated each
method in terms of separation performance, accuracy of output
signal order, and runtime. We compared our proposed method
GC-AuxIVA-ISS with GCAV-IVA and AuxIVA-ISS. For clar-
ity, we refer to GCAV-IVA as GC-AuxIVA-VCD hereafter.
Since output order of AuxIVA-ISS is arbitrary, we did not
calculate the accuracy of output order. We also examined
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Fig. 1: Layout of sound sources and microphones.

whether the block permutation problem observed in AuxIVA-
ISS can be solved by the proposed method.

A. Setup
We used speech signals of 6 speakers (3 males and 3

females) extracted from the ATR Japanese Speech Database
[16]. We conducted source separation for 2, 3, and 4 sources.
By randomly selecting 2 to 4 different speakers from the
database, we generated 48 pair of source signals and mixtures
for each case. We used the pyroomacoustics Python
package [17] to simulate room impulse responses (RIRs), and
the layout of sound sources and microphones is shown in
Fig. 1. The directions of arrival (DOAs) were set at 20◦ and
70◦ for the 2-source case, 20◦, 70◦, and 120◦ for the 3-source
case, and 20◦, 70◦, 120◦, and 170◦ for the 4-source case,
respectively. The number of microphones was set equal to
the number of sources with the interval of microphones at 2
cm. We tested two different reverberant conditions, where the
reverberation times (RT60) were about 100 ms and 300 ms.
All the speech signals were sampled at 16 kHz. The STFT
was computed using a Hanning window, whose length and
shift were set at 512 samples (32 ms) and 256 samples (16
ms), respectively. All methods were run for 50 iterations.

In these experiments, we assumed that the correct DOAs of
speakers were known and set Θ as follows:

• when J = 2, Θ = {20◦, 70◦},
• when J = 3, Θ = {20◦, 70◦, 120◦},
• when J = 4, Θ = {20◦, 70◦, 120◦, 170◦},

where J is the number of sources. Here, we define
Λ = [λ1 . . . ,λJ ]

T and C = [c1, . . . , cJ ]
T, where λj =

[λjθ1 , . . . , λjθT ] ∈ RT and cj = [cjθ1 , . . . , cjθT ] ∈ RT . T
is the number of elements in Θ, which was equivalent to J .
We considered 3 ways to design the constraints.

• unit response (UR) constraint: cjθ = 1 when θ is the
DOA of the target.

• Null constraint: cjθ = 0 when θ is the DOA of the
interferences.

• Double constraint: constraint using both of the UR and
null constraints.

We achieved UR constraint by setting the non-diagonal ele-
ments of Λ to zero as Λ = ΛI , null constraint by setting
the diagonal elements of Λ = Λ(J − I) to zero, and double

TABLE I: Average SDR [dB], SIR [dB], and accuracy of
output signal order over 48 samples in each condition.

method constraint Λ
SDR
[dB]

SIR
[dB]

accuracy of output
signal order [%]

2 channel
AuxIVA-ISS [14] - - 10.19 12.20 -

GC-AuxIVA-VCD [10]
UR 5 10.09 12.14 100
null 0.8 11.05 13.26 100

double 2 10.95 13.16 100

GC-AuxIVA-ISS
(proposed)

UR 90 10.96 13.18 100
null 80000 11.07 13.30 100

double 80 10.97 13.19 100
3 channel

AuxIVA-ISS [14] - - 9.96 11.98 -

GC-AuxIVA-VCD [10]
UR 2 9.69 11.82 100
null 5 10.62 12.74 100

double 2 10.58 12.75 100

GC-AuxIVA-ISS
(proposed)

UR 60 10.14 12.46 100
null 90000 10.63 12.76 100

double 80 10.06 12.11 100
4 channel

AuxIVA-ISS [14] - - 8.64 10.65 -

GC-AuxIVA-VCD [10]
UR 15 5.68 7.47 100
null 40 9.36 11.28 100

double 2 9.52 11.79 100

GC-AuxIVA-ISS
(proposed)

UR 60 8.84 10.98 100
null 8000 9.17 11.35 100

double 80 8.73 10.84 100

2 ch 3 ch 4 ch0

5

10

15

20

RT60 = 100 ms
2 ch 3 ch 4 ch0

5

10

15

20

RT60 = 300 ms

AuxIVA-ISS
GC-AuxIVA-VCD
GC-AuxIVA-ISS

Fig. 2: Average SDR [dB] under reverberant conditions where
RT60 = 100 ms and RT60 = 300 ms.

constraint by setting as Λ = ΛJ , respectively. Here, Λ is an
arbitrary non-negative value, I is a J ×J identity matrix, and
J is a J × J all-ones matrix.

The separation performance was evaluated using the source-
to-distortion ratio (SDR) and source-to-interferences ratio
(SIR) [18]. The order of the output signals was determined as
the one that achieves the highest SIR among all permutations.
We investigated several values of Λ and chose the optimal one
based on SDR and the accuracy of output signal order.

B. Results

Table I shows the average SDR, SIR, and accuracy of
output signal order over 48 samples in each condition, and
Fig. 2 shows the average SDR under reverberant conditions,
where RT60 = 100 ms and RT60 = 300 ms. The proposed
GC-AuxIVA-ISS showed the equivalent or higher SDR and
SIR scores than the conventional methods. In terms of the
accuracy of output signal order, we confirmed that there were
no samples with incorrect output order for both GC-AuxIVA-
VCD and GC-AuxIVA-ISS. This indicated that the proposed
method, as well as GC-AuxIVA-VCD, could correctly guide
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TABLE II: Runtime [ms] per iteration.

method 2 ch 3 ch 4 ch
AuxIVA-ISS [14] 33.02 62.31 99.06
GC-AuxIVA-VCD [10] 51.12 120.83 217.84
GC-AuxIVA-ISS (proposed) 33.60 63.16 101.60
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(a) AuxIVA-ISS
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(b) GC-AuxIVA-ISS

Fig. 3: Examples of beam patterns obtained by AuxIVA-ISS
and GC-AuxIVA-ISS with double constraint when the number
of sources was 4, the target direction was 70◦, and RT60 = 300
ms. Block permutation problem occurred between the low- and
high-frequency bands in AuxIVA-ISS, which was avoided in
GC-AuxIVA-ISS.

the output order if the weights of the regularization terms were
set appropriately.

Figure 3 shows examples of beam pattern obtained by
separating the same input sample with AuxIVA-ISS and GC-
AuxIVA-ISS. In Fig. 3(a), block permutations occurred be-
tween the low- and high-frequency bands, whereas in Fig. 3(b)
it did not. This indicated that spatial information was effective
for the ISS-based update rules to avoid the block permutation
problem.

Table II shows the runtime of each method averaged over
iterations for separating a signal with length of 10 seconds.
We found that GC-AuxIVA-VCD took longer runtime than
AuxIVA-ISS or GC-AuxIVA-ISS. Especially in the case of 4
channels, the ISS-based methods took less than half of runtime
of the GC-AuxIVA-VCD.

V. CONCLUSIONS

In this paper, we proposed an algorithm for GC-IVA using
ISS method, which we call GC-AuxIVA-ISS. GC-AuxIVA-
VCD is a method that combines IVA with a set of linear
constraints that limit the far-field responses of the demixing
filters, whose update rules are derived based on the auxiliary
function approach and VCD. The matrix inversion required
for each iteration is computationally inefficient and makes
numerical computations unstable. On the other hand, the
proposed method based on ISS does not require inverse matrix,
resulting in a lower computational cost. The experimental
results confirmed that the proposed method outperformed
the conventional GC-AuxIVA-VCD in terms of separation
performance and runtime.

APPENDIX A. SOLUTION OF SIGN AMBIGUITY IN (31)

When i = j and (25) holds, by extracting the terms
containing vjj in L and substituting (28), (29), and (31) into

those we obtain:

− log

∣∣∣|βj | ∓
√
|βj |2 + αj

∣∣∣
αj

+
1

2αj

{(
− |βj | ∓

√
|βj |2 + αj

)2

− 4|βj |2
}
. (35)

From (35), L becomes smaller when we take +. Then the ∓
sign in (31) should be positive.
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