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Abstract—Acoustic scene classification (ASC) aims to classify an
audio clip based on the characteristic of the recording environment.
In this regard, deep learning based approaches have emerged
as a useful tool for ASC problems. Conventional approaches to
improving the classification accuracy include integrating auxiliary
methods such as attention mechanism, pre-trained models and
ensemble multiple sub-networks. However, due to the complexity
of audio clips captured from different environments, it is difficult
to distinguish their categories without using any auxiliary methods
for existing deep learning models using only a single classifier.
In this paper, we propose a novel approach for ASC using deep
neural decision forest (DNDF). DNDF combines a fixed number
of convolutional layers and a decision forest as the final classifier.
The decision forest consists of a fixed number of decision tree
classifiers, which have been shown to offer better classification
performance than a single classifier in some datasets. In particular,
the decision forest differs substantially from traditional random
forests as it is stochastic, differentiable, and capable of using the
back-propagation to update and learn feature representations in
neural network. Experimental results on the DCASE2019 and
ESC-50 datasets demonstrate that our proposed DNDF method
improves the ASC performance in terms of classification accuracy
and shows competitive performance as compared with state-of-
the-art baselines.

Index Terms—acoustic scene classification, random forest,
convolution neural networks, deep learning

I. INTRODUCTION

Acoustic scene classification (ASC) has attracted much
attention in the fields of Audio and Acoustic Signal Processing
(AASP) [1], [2], as shown in the Detection and Classification of
Acoustic Scenes and Events (DCASE) challenges held in recent
years, where several benchmark datasets have been introduced.
The ASC task focuses on recognizing the audio clips in terms
of the type of acoustic environment where they were captured.
They are useful in applications such as health care [3], [4],
and security surveillance [2].

In past few years, many methods have been developed for
ASC. The classical ASC methods tend to employ hand-crafted
features, including the Mel Frequency Cepstral Coefficients
(MFCCs) [5], [6], spectrogram and log-mel filter banks [7],
and to train the well-known classifier, such as support vector
machine (SVM) [8] and decision trees [9]. However, theoretical
and algorithmic advances together with the increasing capability
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in computer processing have led to the emergence of more
sophisticated methods in artificial intelligence. A representative
method for ASC tasks is deep learning which offers superior
performance in handling a large number of features. The audio
sequences are first converted to time-frequency representations,
including log-mel spectrogram, wavelet transform, and short-
time Fourier transform, as an input of a deep learning system.
In particular, convolutional neural networks (CNNs) [5], [10]
and recurrent neural networks (RNNs) based methods were
shown to provide state-of-the-art performance on some ASC
datasets [11]. Moreover, the CNN variations such as VGG and
ResNet are applied to learn ASC representation [12], [13].

To further improve the classification performance, deep
learning based approaches are extended with some auxiliary
methods, i.e., attention mechanism, pre-trained models and
ensemble sub-networks. Ding et al. proposed an ensemble
system of the CNN and Gaussian Mixture Model (GMM) based
on learned features to improve the classification performance
[14]. Sugahara et al. improved the accuracy by the ensemble
of ResNet-based models and data augmentation methods, such
as mixup, time-shifting, and SpecAugment [15]. Han et al.
introduced the attention mechanism to improve deep CNN
performance [16]. Moreover, Huang et al. improved the deep
CNN using spatial-temporal attention pooling [17]. Bilot et al.
proposed a fusion system that uses multi-layer perceptron
(MLP) to get the final results from the initial class label
probability predictions [18]. In addition, Wang et al. used
a custom-designed CNN for the recognition [19].

Conventional methods focus on learning better feature
representations by proposing diverse network structures, which
usually use the softmax classifier as the final layer. However,
due to the complexity of audio clips collected from different
environments, it is difficult for existing deep learning models
using only a single classifier, i.e., Softmax, to distinguish audio
clip categories. In machine learning, there are various well-
known classifiers, such as SVM [8] and random forests [20],
[21], which show an outstanding classification or prediction per-
formance. In particular, the traditional random forests algorithm
has achieved great success in practical applications, which is a
typical ensemble method combining a fixed number of decision
trees [20]. However, combining deep learning with the random
forests method has received little attention due to the limitations
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associated with the local optimal strategy, i.e., calculating node
features and split thresholds using the Gini index or information
gain rate, which results in the challenge in performing back-
propagation for combined models [22]. Kontschieder et al.
addressed this limitation by introducing DNDFs approach that
unifies random forests using the representation learning with
deep CNNs, which enables end-to-end training [22]. It was
reported that DNDF shows state-of-the-art performance as
compared to its machine learning counterparts [23].

In this paper, we investigate the performance of DNDF in
ASC. The existing deep learning methods focus on learning
good feature representations using the attention mechanism
and ensemble sub-networks. Most methods routinely use the
softmax classifier as the final layer which may not be sufficient
for classifying audio clips of diverse categories from complex
environments. Therefore, in our work, we employ a decision
forest classifier instead of the softmax as the final predictor. Our
work is the first attempt to apply the DNDF for the ASC task.
Experiments show that the DNDF method achieves competitive
results with the existing state-of-the-art model that uses a pre-
trained model. Moreover, the DNDF method obtains better
performance as compared to most deep CNN models with the
attention mechanism and ensemble sub-networks.

The remainder of this paper is organized as follows. The
next section introduces our proposed method. Section III-D
presents experimental setup. Section III-E shows experimental
results on the DCASE2019 development ASC subtask A and
ESC-50 dataset. Conclusions are given in Section IV.

II. METHODS

A. Deep Neural Decision Forests (DNDFs)

DNDF is a type of CNN that replaces the softmax layer with
decision forests, consisting of several decision trees. Given a
classification dataset with input and (finite) output space X and
Y . A decision tree is a binary tree consisting of decision nodes
and prediction nodes. Here, the symbol N is used to denote
the decision node index of a decision tree. L denotes the set
of the prediction node indices {1, ..., L}. Each prediction node
l ∈ L has a probability distribution πl over Y . Each decision
node n ∈ N is assigned a decision function dn(·; θ), where
the parameter θ from the CNN is used to update the feature
representation. Moreover, the embedding function fn(·; θ) :
X → R is defined in CNN, which will determine the action
of the decision function dn(·; θ) of the decision trees. Fig. 1
shows the structure of DNDF, including how decision nodes
can be implemented by using the output of the final layer of
CNN. For illustration, we only show the example of building
a single decision tree in DNDF by using a fixed number of
CNN embedding functions.

In DNDF, the fully-connected and convolutional layers are
the same as those in a general CNN. The feature representations
learned by the fully-connected layer are used as the tree node
of the decision trees in decision forests. Therefore, CNN nodes
share the same parameter θ that is used to update the feature

Fig. 1. The architecture of the DNDF model. In this model, seven embedding
functions fn (n = 1, . . . , 7) are provided by the final layer of CNN, which is a
real-value function depending on the sample and the parameter θ. Each output
of fn determines the decision function dn of each node for the decision trees.
Each prediction node at the bottom of the decision tree has the probability
distribution πl for each class.

representation of CNN as the tree nodes. The decision function
of each decision node dn(·; θ) is defined as follows

dn(x; θ) = σ(fn(x; θ)), (1)

where x ∈ X is the input sample, σ(fn) = (1 + e−fn)−1 is
the sigmoid activation function, and fn(·; θ) is a real-valued
function depending on the sample and the parameters θ, which
can be regarded as the linear output unit of the neural network
node. When a sample x ∈ X arrives at a node, whether it
goes to the left or right subtree of this node is determined by
the output of dn(x; θ). In DNDF, a sample arrives from a tree
node to a leaf node via stochastic routing. The routing function
µl(x|θ) is defined as follows,

µl(x|θ) =
∏
n∈N

dn(x; θ)
↙d̄n(x; θ)

↘, (2)

where d̄n(x; θ) = 1− dn(x; θ), d↙n represents the route from
the current node to the left, and l is the leaf node. As an
example in Fig. 1, for the sample reaching the leaf node l = 4,
we have:

µ(l=4) = d1(x)d̄2(x)d̄5(x). (3)

Under the stochastic routing strategy, a sample arrives at a
leaf node l, the related tree prediction is determined by the class
label distribution πl. πly represents the probability of sample
reaching leaf node l to take on class y. The final prediction
for a sample that takes on a class y is the average probability
of this sample reaching the leaf node, defined as

P [y|x, θ, π] =
∑
l∈L

πlyµl(x|θ). (4)

For the decision forests, it is an ensemble of several decision
trees F = T1, ..., Tk. The final prediction of decision forests
for a sample x is the average output of each tree, that is,

PF [y|x] =
1

k

k∑
h=1

PTh
[y|x]. (5)
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Fig. 2. The architecture of the DNDF model for ASC, where 512 embedding
functions fn (n = 1, . . . , 512) are provided by the final layer of CNN4, and
the decision trees are constructed based on these 512 embedding functions.
The output of each fn determines the decision function dn of each node in
the decision trees. Each node at the bottom of the decision tree gives the
probability distribution πl for each class of the acoustic scenes.

B. Application of DNDF in ASC

We proposed a DNDF for the task of ASC. Specifically,
DNDF consists of two parts, i.e., CNN and decision forests. In
particular, we design a CNN4 with four convolutional blocks.
Each convolutional block has one convolutional layer with
a kernel size of 5× 5. After each convolutional layer, batch
normalization and ReLU are used. The channel numbers of
each convolutional block are 64, 128, 256, 512, respectively.
Moreover, an average pooling layer with kernel size 2× 2 is
employed between two neighbouring blocks for down-sampling.
The decision forest is used after the fourth convolutional block.
Here, DNDF takes log Mel-spectrogram features of the acoustic
clips as the inputs. Fig. 2 shows the proposed architecture
of DNDF for ASC, where 512 embedding functions fn(·; θ)
(n = 1, . . . , 512) are provided by the final layer of CNN4 to
construct the decision trees, and the parameter θ is used to
update the feature representation. In particular, the output of
each fn(·; θ) determines the decision function dn(·; θ) of each
node, i.e, Eq. (1). Each node at the bottom of the decision
tree gives the probability distribution πl for each class of the
acoustic scenes, i.e., Eq. (4) and Eq. (5).

C. Learning Procedure of DNDF

In DNDF, given a training dataset T ⊂ X × Y , we start
with random initialization of the common parameter θ of the
decision trees and convolutional network. Furthermore, an
iterative learning procedure is performed with a predefined
number of epochs. Given the value of θ, the estimates of
the node parameters π are obtained, setting the initial value
in each leaf node as π

(0)
ly = |Y |−1. To estimate and update

the parameters θ and π, we search for the minimizers of the

following empirical risk function, i.e.,

R(θ, π; T ) =
1

|T |
∑

(x,y)∈T

L(θ, π;x, y), (6)

where L(θ, π;x, y) = −log(PT [y|x, θ, π]) denotes the log-
loss term for the training sample (x, y) ∈ T . Moreover, we
divide the training data into mini-batches. Then, we perform
stochastic gradient descent (SGD) to update the parameter
θ by minimizing the empirical risk function based on each
mini-batch. This learning process is given in Algorithm 1.

Algorithm 1: The parameter learning process of DNDF

Require: Given training set T , epochs = K
Initialization parameter θ
For each Epoch i ∈ {1, ...,K} do

Use an iterative scheme to compute π
Split T into a fixed number of random mini-batches

For each mini-batch do
Use SGD to update θ by minimizing Eq. (6)

end for
end for

III. EXPERIMENTS

A. Dataset

To evaluate the performance of DNDF in ASC, the DCASE
2019 development ASC subtask A dataset and the ESC-50
environmental sound classification dataset are used in our
experiments. DCASE 2019 is an extension of the DCASE
2018 TUT Urban ASC dataset with 10-second-long clips.
There are 10 acoustic scenes in DCASE 2019, including bus,
metro, metro station, park, public square, street pedestrian,
shopping mall, tram, street traffic and airport. The DCASE
2019 ASC dataset contains 9185 audio clips for training and
4185 clips for testing, sampled at 48 kHz. The ESC-50 dataset
contains 2000 environmental audio clips each of 5-seconds,
sampled 41 kHz, from 50 semantic classes.

B. Audio Processing and Augmentation

The original audio clip is converted to 64-dimensional log
Mel-spectrogram by using the short-time Fourier transform
with a frame size of 1024 samples, a hop size of 320 samples,
and a Hanning window. In addition, SpecAugment is used for
data augmentation [24].

C. Baseline

Our proposed method does not use auxiliary techniques
such as attention mechanism and pre-trained model. Therefore,
we choose the CNN-based variations as well as some CNN
methods that use an attention mechanism, pre-trained and
ensemble multiple sub-network as the baseline methods.

For the DCASE 2019 ASC dataset, we choose
CDNN CRNN [25], Attention CNN [16], HPSS MFCC CNN
[17], MIL CNN [18] and MFCC CNN [19] for the comparison.
The CDNN CRNN [25] model is a joint learning model based
on a Deep CNN and Convolutional RNN. The Attention CNN
[16] model improves the performance of deep CNN by
introducing an attention mechanism. The HPSS MFCC CNN
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[17] uses deep CNN with spatial-temporal attention pooling.
Moreover, the mixup data augmentation technique is employed
to improve the classification performance further. Inspired
by the multiple instant learning, the MIL CNN [18] model
uses MLP to get the final results from the initial predictions
of the class label probability. The MFCC CNN [19] model
extracts the MFCC feature from audio files and uses the CNN
with four-layer convolution and two fully connected layers for
classification.

For the ESC-50 dataset, we compared existing algorithms
including WELACNN [26], ACLNet [27], ENSCNN [28] and
ACDNet [29]. The WELACNN model [26] uses the transfer
learning technique to learn knowledge from weakly labeled
audio data based on a CNN. The ACLNet [27] introduces an
efficient CNN architecture by using data augmentation and
regularization. The ENSCNN [28] ensembles classifiers by
combining six data augmentation techniques and four signal
representations to train five pre-trained CNNs. The ACDNET
[29] uses a large deep CNN as a pipeline of a network for
edge devices with resource constraints. The work [30] is a
state-of-the-art attention-based CNN model with transformer
encoder, pre-trained on AudioSet [31].

D. Training Procedure

The DNDF model is trained by employing the Adam
optimizer with a learning rate of 0.001. Moreover, the batch
size is set to 150, the number of epochs is 500, the depth of the
decision trees is 10, and the number of decision trees is 100. In
particular, for the ESC-50 dataset, to ensure the same settings
as the comparison methods, we train the DNDF model with
5-fold cross-validation and report the average classification
accuracy. For the comparison methods, we do not perform the
training and testing processes. The results of the compared
methods are all taken from the public results in their original
papers.

E. Results

The same evaluation metric adopted in subtask A of the
DCASE 2019 is used, i.e., the classification accuracy. Table
I and Table II show the classification results of DNDF and
baseline methods on DCASE 2019 ASC subtask A and ESC-50
datasets, respectively.

TABLE I
MEAN CLASSIFICATION ACCURACY OF THE COMPARED METHODS ON THE

DCASE2019 DEVELOPMENT ASC SUBTASK A. THE BEST RESULT IS
SHOWN IN BOLDFACE.

Model DCASE2019
CDNN CRNN [25] 73.70
Attention CNN [16] 70.70

HPSS MFCC CNN [17] 73.90
MIL CNN [18] 72.30

MFCC CNN [19] 73.50
DCASE2019 baseline 63.30

DNDF (ours) 75.90

Experimental results show that the DNDF method outper-
forms the baseline CNN-based methods. In particular, DNDF

TABLE II
MEAN CLASSIFICATION ACCURACY OF THE COMPARED METHODS ON THE

ESC-50 DATASET. THE BEST ACCURACY IS SHOWN IN BOLDFACE.

Model ESC-50
WELACNN [26] 83.50

ACLNet [27] 85.65
ENSCNN [28] 88.65
ACDNet [29] 87.10

SOTA [30] 95.70
DNDF (ours) 88.90

TABLE III
THE CLASSIFICATION ACCURACY OF DNDF WITH DIFFERENT NUMBERS OF

DECISION TREES ON THE DCASE2019 DEVELOPMENT ASC SUBTASK A
AND THE ESC-50 DATASET. THE BEST ACCURACY IS SHOWN IN BOLDFACE.

Number of trees DCASE2019 ESC-50
5 72.80 84.80

10 73.80 87.50
20 74.40 88.50
50 74.50 88.60
80 75.70 87.70
100 75.90 88.90

#Tree depth 10 10
#Batch size 150 150

obtains better accuracy than the CNN-based model with the
attention mechanism [16], [17] and ensemble multiple sub-
network method [18], [28] as the decision forest can guide the
representation learning in lower layers of deep CNN. Moreover,
the CNN can gradually learn a good feature representation
based on the decision forest prediction results. At the same
time, the results also demonstrate that DNDF with decision
forest as the final classifier can have satisfactory classification
performance. The reason for achieving good prediction results
is that DNDF uses a number of decision tree based classifiers,
which has a stronger classification ability than a single classifier.
However, it is worth noting that DNDF does not outperform
the SOTA model. This is because the SOTA method has used
the transformer based encoder that has been pre-trained on
Audioset [30], while our method does not use pre-training.

In addition, to investigate the effect of the number of decision
trees on the performance of DNDF, we evaluate the use of
different numbers of the decision trees, and observe the change
in the classification accuracy of DNDF. The results are shown
in Table III. It can be found that the classification accuracy
increases gradually with the number of decision trees. These
results illustrate that DNDF is robust with the number of trees.

IV. CONCLUSION

In this paper, we have presented a DNDF model for the
ASC by combining the convolution neural network and decision
forest. The traditional random forests have a rich and successful
history in machine learning and computer vision. However,
the traditional random forests and neural networks cannot
be learned together in an end-to-end manner due to the
non-differentiability of the traditional random forests for the
parameters of neural networks. The decision forest in DNDF
differs from the conventional random forests because it is
stochastic and differentiable. Therefore, the decision forest
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can learn and optimize the feature representation of the deep
neural networks. To the best of our knowledge, our work is the
first attempt to use the DNDF for the ASC task. Experiments
demonstrated that the DNDF method achieves competitive
results with the existing state-of-the-art model which, however,
uses a pre-trained model built on large scale training data.
Moreover, the DNDF method obtains better performance than
existing deep CNN models with the attention mechanism and
ensemble multiple sub-networks.
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