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Abstract—In this work, the Bayes-optimal Bernoulli filter (BF)
is studied for the target tracking where the target is randomly
present or absent in the view field of the sensor while the
sensor may provide imperfect measurement which contains miss
detection and false alarm. To solve the issue that the dynamic
model of the target is switching in an unknown mode, we employ
the Gaussian process (GP) regression tool, which is a data-driven
approach for learning the motion model online, to approximate
the transitional density in the formulation of the BF. To deal
with the nonlinear measurement model, the proposed GP-based
BF is implemented using particles. In the simulation experiment,
the proposed approach is performed on a maneuvering target
tracking scenario and compared with the Bernoulli particle filters
utilizing the full or partial model changing information.

Index Terms—Gaussian process regression, Bernoulli filter,
data-driven approach, particle filter.

I. INTRODUCTION

The target tracking problem, referred to the estimation of
the latent state of interest from the noise corrupted signal or
imperfect measurement in discrete time, has been widely used
in the engineering field. Classic methods for target tracking are
model-dependent, in which the state-space models are modeled
as a Markov process of the unobserved state, thereby inferring
the state of interest through the Bayesian framework [1]. There
are two challenges in real target tracking applications: the
reliable dynamic models and statistic noises are time-varying
and hard to be modeled due to the maneuvering of target; the
targets are stochastically present or absent in the view field
of sensor owing to the physical characteristics. s According
to the formulation of standard Bayes filters [1], the inevitable
components are the dynamics and measurement models, which
are described by some parameters about the involved physical
processes. Although these parametric models are convenient to
be designed and computationally efficient, accurate parametric
models are difficult to obtain, which in turn may limit the
performance.
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To overcome these limitations, the Gaussian process regres-
sion (GPR) provides a non-parametric method successfully
applied in learning prediction and observation models for
dynamic systems. Gaussian process (GP) [2] assumes that
a distribution of the approximated function is specified by
the mean and covariance functions. Due to the key feature
that GPs calculate not only the mean of the predictive states
but also the uncertainty of these states, GPs are employed to
deal with the problem of system identification, [3], [4]. [5]
integrates GP into various forms of Bayes filters and presents
the GP-BayesFilters, so GPR models are combined with the
extended Kalman filter (GP-EKF), the unscented KF (GP-
UKF) and the particle filter (GP-PF). [6] incorporates GP
into the cubature KF (CKF) and proposes consensus cubature
filtering algorithm based on GP (CCF-GP) in a distributed
sensor network. Gaussian process motion tracker (GPMT) is
addressed in [7], [8], which is a data-driven approach for target
tracking with online training and parameter learning.

Due to the background clutters and imperfect detection, a
dynamic Bernoulli phenomenon that a target can enter and
exit the view of sensors at random instances is taken into
account in some target tracking applications. [9], [10] model
this phenomenon as a Bernoulli process for the state transition
and vague measurement respectively based on the finite set
statistic (FISST) [11], which leads to the so-called Bernoulli
filters (BFs). [10], [11] have illustrated that the BF is the
optimal Bayes filter for a single dynamic system which can
randomly switch on or off. The BF has received considerable
attention in the field, which has been furthered extended to
account for the point measurements with amplitude [12], for
the distributed implementation [13], etc.

In order to deal with target motion model switching in an
unknown manner, this paper proposes a Bernoulli particle filter
based on GP which learns the prediction models from the
posterior states and realizes the joint detection and tracking
for intensity measurements by incorporating GP into Bernoulli
particle filter. Moreover, The numerical simulation is designed
to illustrate the feasibility and effectiveness of our method by
comparing with these standard BFs utilizing the full or partial
model changing information.

The remaining part of this article is structured as follows.
Background knowledge and notation are given in Section II.
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The proposed BF based on GP is introduced in Section III.
The simulation results are presented in Section IV. Finally,
Section V concludes this paper.

II. PRELIMINARIES AND NOTATION

A. Random Finite Sets

A random finite set (RFS) X is a random variable with re-
spect to unordered finite sets, which is completely determined
by its cardinality distribution ρ(n) = P (|X| = n), n ∈ N0

and a family of symmetric joint distribution pn(x1, . . . , xn).
According to the FISST [11], the FISST probability density
function (PDF) f(X) is expressed as:

f(X) = f({x1, . . . , xn}) = n! · ρ(n) · pn(x1, . . . , xn). (1)

The set integral is defined as∫
f(X)δX = f(∅) +

∞∑
n=1

1

n!

∫
f({x1, . . . , xn})dx1 . . . xn.

(2)
The Bernoulli RFS and the Poisson RFS are relevant for

this paper since the intensity measurement for a single target
is only taken into account. The Bernoulli RFS X, whose
cardinality distribution ρ(n) is Bernoulli, can either be empty
(with probability 1− q) or have one element (with probability
q) complying with the distribution p(x). The FISST PDF f(X)
is given as:

f(X) =

{
1− q if X = ∅
q · p(x) if X = {x} . (3)

The Poisson RFS X is defined as its cardinality distribution
is Poisson. The FISST PDF of Poisson RFS can be derived
by Equation (1) as following

f(X) = e−λ
∏
x∈X

λp(x), (4)

where λ denotes the expected number of the elements.

B. Bernoulli Filter

Let fk|k(Xk|Z1:k) denote the posterior FISST PDF at time
k. According to the structure of a Bernoulli RFS, like (3), it
can be uniquely determined by two quantities: a) the posterior
probability of target existence qk|k; b) the posterior spatial
PDF sk|k. Therefor the BF only needs to propagate the pair
(qk|k, sk|k) that contains these two quantities.

Keeping consistent with the framework of Bayes filter, the
prediction equations of the BF, originally derived in [11] via
the Chapman—Kolmogorov equation, are given by:

qk|k−1 = pb(1− qk−1|k−1) + psqk−1|k−1, (5)

sk|k−1(x) =
pb(1− qk−1|k−1)bk|k−1(x)

qk|k−1

+
psqk−1|k−1

∫
πk|k−1(x|x′)sk−1|k−1(x′)dx′

qk|k−1
,

(6)

in which pb is the probability of target born during the
sampling interval with the birth density bk|k−1(xk); ps is the

probability of target survival from time k − 1 to k with the
transitional density πk|k−1(xk|xk−1).

In this paper, we only focus on the intensity measure-
ment model. Suppose the sensor contains n ≥ 1 intensity
measuring elements reporting simultaneously a measurement
value z

(s)
k , s = 1, . . . , n at time k on the known locations.

All n measurements are collected into a single measurement
RFS zk = [z

(1)
k , . . . , z

(n)
k ]T. The intensity contribution of the

element s can be expressed as:

z
(s)
k =

{
h

(s)
k (xk) + w

(s)
k if Xk = {xk}

w
(s)
k if Xk = ∅

, (7)

where h
(s)
k (xk) is the intensity contribution in element s

according to the measurement likelihood g
(s)
1 , and w

(s)
k is

the background noise subjecting to the PDF g
(s)
0 . Then the

likelihood function of the measurement vector zk can be
calculated as:

ϕk(zk|Xk) =


n∏
s=1

g
(s)
1 (z

(s)
k |x) if Xk = {x}

n∏
s=1

g
(s)
0 (z

(s)
k ) if Xk = ∅

. (8)

According to the update step of Bayes filter, the update
equations of the BF, referred to [10], are given as:

qk|k =
qk|k−1

∫
`k(zk|x)sk|k−1(x)dx

1− qk|k−1 + qk|k−1

∫
`k(zk|x)sk|k−1(x)dx

, (9)

sk|k(x) =
ϕk(zk|{x})sk|k−1(x)∫
ϕk(zk|{x})sk|k−1(x)dx

(10)

with the measurement likelihood ratio:

`k(zk|x) =
ϕk(zk|{x})
ϕk(zk|∅)

=

n∏
s=1

g
(s)
1 (z

(s)
k |x)

g
(s)
0 (z

(s)
k )

. (11)

C. Gaussian Process

A GP is a collection of random variables, any finite number
of which have a joint Gaussian distribution [2]. Suppose there
is a training data set D = {(xi, yi)|i = 1, . . . , l} containing l
training points (xi, yi), in which xi is the d-dimensional input
feature vector and yi is a scalar training output corresponding
to xi. One assumes that these training points are derived from
the noisy process yi = f(xi) + ε, i = 1, . . . , l, where f(·)
is the unknown function to be learned by a GP, ε denotes a
additive noise following an IID Gaussian distribution with zero
mean and variance σ2

l . The GP will can be simply written as
f(x) ∼ GP(m(x), k(x, x′)), in which m(x) and k(x, x′) are
the mean function and the covariance (kernel) function of a
real process f(x), respectively.

The covariance function is the crucial component of a
GP, whose choice lies on the characteristics of the process.
The most widely used form is the squared-exponential (SE)
covariance function [14]:

k(x, x′) = σ2
fexp{−1

2
(x− x′)W (x− x′)T}+ σ2

l δ, (12)
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where σ2
f and σ2

l are the signal variance and noise variance,
respectively. •T denotes the transpose operator. The diagonal
matrix W = diag(1/L2

1, 1/L
2
2, . . . , 1/L

2
l ) is the length-scales

matrix. x and x′ are either training or testing vector. δ
represents the Kronecker-delta function which is one if x = x′

or zero otherwise.
The free parameters of the covariance function θ =

[W,σf , σl] are referred to as Hyperparameters. θ can be
determined by θmax = argmax

θ
log(p(y|X, θ)), and the log

marginal likelihood log(p(y|X, θ)) is given in [2]. The solution
of Hyperparameters can be obtained via some numerical
optimization techniques [15].

Given the test input x∗, the predictive mean and variance of
Gaussian distribution over the output y∗ are respectively given
by [2]:

GPµ(x∗,D) = kT
∗K
−1y, (13)

GPΣ(x∗,D) = k(x∗, x∗)− kT
∗K
−1k∗, (14)

in which K is the l by l kernel matrix and K[i, j] = k(xi, xj),
GPµ(x∗,D), k∗ is a vector whose elements between x∗ and
X are calculated by the covariance function.

III. PROPOSED GAUSSIAN PROCESS BERNOULLI FILTER

In this section, we will first design a GPR method to learn
the prediction models from the time-series posterior states.
Then this method is incorporated with the BF in the sequential
Monte Carlo framework to realize the joint detection and
tracking for the intensity measurement model.

A. GPR Model for Recursive Prediction

The GPR model for recursive prediction assumes that each
dimension of the target state is not correlated in the predictive
time instance, but these dimensional states may be correlated
in the previous moments. Suppose that the posterior estimated
states in time-series {x̂1, x̂2, . . . , x̂k} are available, in which x̂it
is the i-th dimension of the posterior state x̂t at time instance
t. The predictive state is denoted as x̂k+1|k, each dimension
of variable x̂ik+1|k is nonlinearly dependent on the function of
time f i with some uncertainties, which is modeled by a GP,
i.e.,

x̂ik+1|k = f i(t) + εi, i = 1, 2, . . . , nx, (15)

f i(t) ∼ GPi(m(t), k(t, t′)). (16)

We note that the formulation (15) resembles the trajectory of
function of time [16], [17], which is free of Markov modeling.
By this, we are able to learn the trajectory of the target from
the data rather than from an assumed Markov model. The
corresponding training data set Di = (tk,Xi) is selected from
the d most recent posterior estimated states, where tk = [k−
d+1, k−d+2, . . . , k]T represents the the d most recent time
instances and Xi = [x̂ik−d+1, x̂

i
k−d+2, . . . , x̂

i
k]

T represents the
training output consisting of the i-th dimensional variables of
these corresponding posterior states. d is also called the depth
of the training. The predictive mean and variance of the state

for i-th dimension at time t∗ = k + 1 are respectively given
by:

GPiµ(t∗,Di) = kT
∗K
−1yi, (17)

GPiΣ(t∗,Di) = k(t∗, t∗)− kT
∗K
−1k∗. (18)

the most recent posterior 

estimated states 

GP model 1

GP model 1

GP model 1

,

,

,

,

,

,

the distribution of 

predictive states 

learn predict

Fig. 1: Learning and prediction process for GP model

According to the learning and testing processes shown in
Fig. 1, the distributions of variables of each dimension are pre-
dicted separately by GPR. Assuming that the variables in each
dimension are independent and obey Gaussian distribution, the
probabilistic distribution of the predictive state x̂k+1|k can be
expressed as:

PGP(x̂k+1|k) = N (GPµ,GPΣ), (19)

in which GPµ = [GP1
µ(t∗,D1), . . . ,GPnx

µ (t∗,Dnx)]T and
GPΣ = diag{[GP1

Σ(t∗,D1), . . . ,GPnx

Σ (t∗,Dnx)]} are the
mean and covariance of the Gaussian predictive distribution.

Unlike the GMPT proposed in [7], [8], our presented
learning and testing processes do not employ the position
information transferred by the measurements, but the posterior
states estimated by the designed filter. The proposed Bernoulli
particle filter Based on GP predicts the state through the most
recent posterior states and corrects the predictive state by the
last measurement.

B. Bernoulli Particle Filter Based on GP

Since the recursions of the BF have no analytic solution
in general, we usually resort to some approximate treatments,
e.g. particles or Gaussian mixture [10], [18]. The Bernoulli
particle filter employs a series of particles {w(i)

k , x(i)
k }Ni=1

to approximate the spatial PDF sk|k(x) by the state of the
art sequential Monte Carlo method [19]–[22], in which x(i)

k

and w
(i)
k denote the state of particle i and its corresponding

normalized weight, i.e.,
∑N
i=1 w

(i)
k = 1, respectively.

Given the probability of existence is qk−1|k−1 at time k−1,
and based on the core of the sequential Monte Carlo method,
the posterior spatial PDF can be expressed by

ŝk−1|k−1(x) =
N∑
i=1

w
(i)
k−1δx̂(i)k−1

(x). (20)

According to the expect a posterior (EAP), the posterior point
estimated state x̂k−1 is given as: x̂k−1 =

∑N
i=1 w

(i)
k−1x(i)

k−1.
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For the prediction step of the BF, the predictive probability
of existence is directly calculated by (5). The predictive spatial
PDF ŝk|k−1(x) is also approximated by a group of particles,
i.e.,

ŝk|k−1(x) =
N+B∑
i=1

w
(i)
k|k−1δx̂(i)

k|k−1

(x), (21)

in which B is the number target-birth particles drawn from
the proposal distribution βk, discussed in the standard particle
filter [19], [23], [24]. The particles are generated from two
proposal distributions

x(i)
k|k−1 ∼

{
ρk(xk|x(i)

k ,Zk) i = 1, . . . , N
βk(xk|Zk) i = N + 1, . . . , N +B

(22)

with the weights

w
(i)
k|k−1 =



psqk−1|k−1

qk|k−1

PGP(x
(i)
k|k−1)w

(i)
k−1

ρk(xk|x(i)
k ,Zk)

,

i = 1, . . . , N,

ps(1− qk−1|k−1)

qk|k−1

bk|k−1(x
(i)
k|k−1)

βk(xk|Zk)
,

i = N + 1, . . . , N +B.

(23)

As for the update equations (9) and (10), the likelihood
ratios for each particle can be straightforwardly computed and
the integral in (9) is approximated as

Ik =

∫
`k(zk|x)sk|k−1(x)dx ≈

N+B∑
i=1

`k(z|x(i)
k|k−1)w

(i)
k|k−1.

(24)
Except the prediction steps which employ the GP to forecast

the distribution of the state at next time instance, the process of
the particle BF based on GP is similar to the standard Bernoulli
particle filter, whose pseudo-code is detailed as the Algorithm
1 in [10].

IV. NUMERICAL SIMULATIONS

In numerical simulation, we consider a scene where the
target turns around on the x-y coordinates plane, which the
target switches the motion model between constant velocity
(CV) and constant turn (CT) models. The sensor located at
the origin of coordinate measures the bearing-range data. The
state variable of the target xk = [px,k, ṗx,k, py,k, ṗy,k]

T com-
prises the position and velocity for each coordinate. The state
transition model is xk = FCV/CT xk−1 +Gwk−1, where FCT
and FCV are the state transitional function of CT and CV, re-
spectively. FCT , FCV and G can be referred to [25]. Sampling
interval T = 1 s, process noise wk ∼ N (0, diag([σ2

x, σ
2
y]))

with σx = σy = 5 ms−2, and the turn rate ω = 1.5π/180 rad.
The measurement variables of sensor zk = [θ, γ]T can be

described as zk = [arctan(py,k/px,k),
√
p2
x,k + p2

y,k]
T + vk,

where the measurement noise vk ∼ N (0, diag([σ2
θ , σ

2
γ ])) with

σθ = π/180 rad and σγ = 20 m. The observation region is the
half disc [0, π] rad by [0, 2000] m. Background clutter subjects
to a Poisson RFS with a mean rate of 20 return per scan and
a uniform spatial distribution on the observation region.
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Sensor

Fig. 2: Target trajectory and sensor position

The target appears at time k = 10 s, follows the CV model
in the time interval [11, 40], the CV model in [41, 160] and
the CV model in [161, 190] successively, and then disappears
after time k = 191 s. The target trajectory is shown as Fig. 2,
the red circle and triangle respectively denote the start and end
point of the trajectory, respectively, and the blue star indicates
the position of sensor.

In the setting of all filters, the probability of survival is
ps = 0.9, the probability of detection is pd = 0.85, and the
probability of target birth is pb = 0.1 with the birth density
bk|k−1(x) = N (x;mb, Qb) where mb = [−20,−2, 20, 10]
and Qb = diag([100, 10, 100, 10]2). The number of particles
sampled from the proposal prediction distribution is N = 1500
and the number of particles drawn directly from the birth
density is B = 500 at each time step. The depth of training
is d = 8 for the BF based on GP, denoted as GPBF.
The standard Bernoulli particle filter with perfect Fdynamic
models, i.e., switch ideally between CV and CT, is denoted
as ideal BF in the following figures and tables. In addition,
the Bernoulli filters which only employ a single CT or CV
model are denoted as BF (CT) and BF (CV), respectively.
Except the ideal Bernoulli particle filter, all filters do not have
the information about motion models switching. The tracking
results of the BF based on GP is given in Fig. 3.

Although the estimation of the proposed method initiates
and terminates the true track with some time steps delay,
it can be found that the estimates of both x-coordinate and
y-coordinate positions can concentrate on the true values of
target track in the presence of clutters. Therefore the proposed
approach adopts to the changing motion model scenarios
through learning the GP models from the posterior estimated
states and is feasible for the scene exists randomly on/off
switching and imperfect detection.

To evaluate the performance of these filters, the optimal
sub-pattern assignment (OSPA) distance, referred to as [26],
is used. The cutoff parameter of OSPA is c = 100 and order
p = 2. The OSPA distance for 100 Monte Carlo runs of four

TABLE I: Processing Time in Milliseconds

Method Ideal BF BF(CT) BF(CV) GPBF
Time (msec) 2.6802 2.6803 2.6980 23.1472
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Fig. 4: OSPA distance for Bernoulli particle filters

BFs are given in Fig. 4, which shows the total OSPA, along
with its localization and cardinality components. From the Fig.
4, it can be observed that the OSPA distance for the proposed
method is closer to the ideal Bernoulli particle filter than the
others. The BF which utilizes a single CT or CV model tracks
the target with a poor performance than the others.

Moreover, the average processing time of each filter iter-
ation is given in Table I. The processing time of Bernoulli
particle filter based on GP is much longer than the other
three methods whose processing times are nearly equal. This
is owing to that the proposed method requires learning the
GP model and prediction for particles at each iteration, which
makes it computationally costly. It is therefore our future work
to speed up the GP learning speed.

V. CONCLUSIONS

In this paper, we propose the Bernoulli particle filter based
on GP. Unlike the model-based approaches that need a-priori,
exact knowledge about the the target dynamics, the proposed
approach employ GP to learn the prediction models from the
time-series posterior states for recursive prediction in the BF.
Simulation results illustrate the proposed method is feasible
and effective for the target maneuvering and imperfect detec-
tion scenario. However, the GP learning efficiency remains a
concern.
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