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Abstract—Tuning of measurement models is challenging in
real-world applications of sequential Monte Carlo methods. Re-
cent advances in differentiable particle filters have led to various
efforts to learn measurement models through neural networks.
But existing approaches in the differentiable particle filter frame-
work do not admit valid probability densities in constructing
measurement models, leading to incorrect quantification of the
measurement uncertainty given state information. We propose to
learn expressive and valid probability densities in measurement
models through conditional normalizing flows, to capture the
complex likelihood of measurements given states. We show that
the proposed approach leads to improved estimation performance
and faster training convergence in a visual tracking experiment.

Index Terms—likelihood learning, conditional normalizing
flow, sequential Monte Carlo methods

I. INTRODUCTION

In this section we first provide a brief introduction to the
conditional density estimation (CDE) problem and sequential
Monte Carlo (SMC) methods. We then illustrate the role of
conditional measurement density estimation in SMC methods,
in particular differentiable particle filters (DPFs), and discuss
their limitations. We summarize our contributions and outline
the structure of this paper at the end of this section.

A. Conditional Density Estimation

Conditional density estimation (CDE) refers to the problem
of modeling the conditional probability density p(y|x) for a
dependent variable y given a conditional variable x. In contrast
to tasks targeting the conditional mean Ep(y|x)[y], CDE aims
to model the full conditional density p(y|x). Applications of
CDE can be found in various domains including computer
vision [1], econometrics [2], and reinforcement learning [3].

Most CDE approaches can be classified into two categories,
parametric CDE models and non-parametric CDE models.
With parametric models, an important assumption is that the
conditional probability density p(y|x) belongs to a family
of probability distributions F := {p(·|x;θ)|θ ∈Θ}, where the
distribution p(·|x;θ) is uniquely determined by a parameter
set θ and a conditional variable x. In particular, p(y|x; θ)
is often formulated as a parameterized function lθ(y, x)
whose parameters θ are learned from data by minimizing the
negative log likelihood (NLL) of training data. Examples of
parametric CDE models include the conditional normalizing

flow (CNF) [4], [5], the conditional variational autoencoder
(CVAE) [1], the mixture density network (MDN) [6], and the
bottleneck conditional density estimator (BCDE) [7]. In con-
trast, non-parametric CDE models do not impose any paramet-
ric restrictions on the distribution family that p(y|x) belongs
to. So, theoretically they can approximate arbitrarily complex
conditional densities [8]. Specifically, non-parametric CDE
approaches often describe the distribution p(y|x) by specifying
a kernel, e.g. the Gaussian kernel, to each training data sample.
However, most non-parametric CDE models assume p(y|x)
to be smooth, and require traversing the entire training set
to make a single prediction [9]. Examples of non-parametric
CDE models include the kernel mixture network (KMN) [8],
the conditional kernel density estimation (CKDE) [10], and
the Gaussian process conditional density estimation [11].

B. Likelihood Learning in Sequential Monte Carlo methods

While CDE models have been employed in many practical
applications, in this work we focus on CDE models to
describe the relation between hidden states and observations
in sequential Monte Carlo methods, i.e. measurement models
in particle filters.

We first introduce the problem setup. Sequential Monte
Carlo methods, a.k.a. particle filters, are a set of powerful and
flexible simulation-based methods designed to numerically
solve sequential state estimation problems [12]. The sequential
state estimation problem we consider here is characterized
by an unobserved state {xt}t≥0 defined on X ⊆ Rdx and an
observation {yt}t≥1 defined on Y⊆Rdy . The evolution of xt

and the relationship between yt and xt can be described by
the following Markov process:

x0∼π(x0), (1)
xt∼p(xt|xt−1,at;θ) for t≥1, (2)
yt∼p(yt|xt;θ) for t≥1, (3)

where θ∈Θ denotes the parameter set of interest, π(·) is the
initial distribution, p(xt|xt−1,at;θ) is the dynamic model, at

is the action, p(yt|xt;θ) is the measurement model estimating
the likelihood 1 of yt given xt. Denote by x0:t ≜ {x0, ···,xt},

1For brevity, we use the term “likelihood” and “conditional measurement
density” interchangeably for the rest of the paper.
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y1:t ≜ {y1, ···,yt} and a1:t ≜ {a1, ···,at} sequences of hidden
states, observations and actions up to time step t, respectively.
Our goal is to simultaneously track the joint posterior
distribution p(x0:t|y1:t,a1:t;θ) or the marginal posterior distri-
bution p(xt|y1:t,a1:t;θ) and learn the parameter θ from data.
However, except in some trivial cases such as linear Gaussian
models, the posterior is usually analytically intractable.

Particle filters approximate the analytically intractable
posteriors with empirical distributions consisting of sets of
weighted samples:

p(x0:t|y1:t,a1:t;θ)≈
Np∑
i=1

wi
tδxi0:t(dx0:t), (4)

where Np is the number of particles, δxi0:t(·) denotes the
Dirac measure located in xi0:t, wi

t is the importance weight
of the i-th particle at time step t. Sampled from the initial
distribution π(x0) at time step t=0 and proposal distributions
q(xt|xt−1,yt,at;θ) at time step t≥ 1, the importance weight
wi

t of the i-th particle xi
0:t can be computed recursively for

each time step:

wi
t∝wi

t−1

p(yt|xi
t;θ)p(xi

t|xit−1,at;θ)

q(xit|xit−1,yt,at;θ)
, for t≥1, (5)

with wi
0=

1
Np

.
The evaluation of the likelihood p(yt|xit; θ) is required

at every time step in SMC methods as shown in Eq. (5).
Traditionally, the measurement model needs to be handcrafted.
However, when observations are high-dimensional and
unstructured, e.g. images, the specification of measurement
models for SMC methods can be challenging and often relies
on extensive domain knowledge. Estimation of model param-
eters in particle filters is an active research area [2], [13], [14].
Many existing approaches are restricted to models where the
model structure or a subset of model parameters is known [15].

Differentiable particle filters (DPFs) were proposed to
alleviate the challenges in handcrafting the dynamic models
and measurement models in SMC methods [16]–[20].
Particularly, the measurement model in DPFs is learned from
data by combining the algorithmic priors in SMC methods
with the expressiveness of neural networks. For example, [17]
considers the observation likelihoods as the scalar outputs of
a fully-connected neural network whose input is the concate-
nation of states and encoded features of observations. In [16],
feature maps of both observations and states are fed into a
fully connected neural network whose outputs are used as the
likelihood of the observations. The likelihood of observations
in [19], [20] is constructed as the cosine similarity between the
feature maps of observations and states. In [18], the likelihood
is given by a multivariate Gaussian model outputting the
Gaussian density of observation feature vectors conditioned
on state feature vectors. In complex environments such as
robot localization tasks with image observations, DPFs have
shown promising results [16]–[20]. Nonetheless, to the best of
our knowledge, existing DPFs do not admit valid probability

densities in likelihood estimation, leading to incorrect quantifi-
cation of the measurement uncertainty given state information.

In this paper, we present a novel approach to learn the
conditional measurement density in DPFs. Our contributions
are three-fold: 1) We developed a novel approach to
construct measurement models capable of modeling complex
likelihood with valid probability densities through conditional
normalizing flows; 2) We show how to incorporate and train
the conditional normalizing flow-based measurement model
into existing DPF pipelines; 3) We show that the proposed
method can improve the performance of state-of-the-art DPFs
in a visual tracking experiment.

The remainder of the paper is organized as follows: Section
II provides background knowledge and Section III describes
the proposed conditional normalizing flow-based measurement
model. We report the simulation setup and experiment results
in Section IV and conclude the paper in Section V.

II. BACKGROUND

A. Differentiable Particle Filters

In differentiable particle filters, both the dynamic model
and the measurement model are often formulated as
parameterized models. For example, the transition of states
and the likelihood of observations can be modeled by the
following parameterized functions, respectively:

xi
t=gθ(xit−1,at,α

i
t)∼p(xt|xi

t−1,at;θ), (6)

yt∼p(yt|xit;θ)= lθ(yt,x
i
t), (7)

where αi
t is the process noise. In [16]–[20], gθ(·) is

parameterized by neural networks taking xt−1 and at as
inputs. [18] adopted different dynamic models in different
experiments, including multivariate Gaussian models whose
mean and covariance matrices are functions of xt−1 and
at, and a pre-defined physical model designed based on
prior knowledge of the system. For the measurement model,
lθ(yt,xi

t) is designed as neural networks with scalar outputs
in [16], [17], [19], [20], and multivariate Gaussian models
in [18]. In addition, proposal distributions can also be
specified through a parameterized function fθ(·):

xi
t=fθ(xi

t−1,yt,at,β
i
t)∼q(xi

t|xit−1,yt,at;θ), (8)

where βi
t is the noise term used to generate proposed particles.

In [20], fθ(·) is built with conditional normalizing flows to
move particles to regions close to posterior distributions.

With the particle filtering framework being parameterized,
DPFs then optimize their parameters by minimizing certain
loss functions via gradient descent. Different optimization
objectives have been proposed for training DPFs, which
can be categorized as supervised loss [16], [17] and semi-
supervised loss [19]. Supervised losses such as the root
mean square error (RMSE) and the negative log-likelihood
(NLL) require access to the ground truth states, and then
compute the difference between the predicted state and the
ground truth [16], [17]. In [19], a pseudo-likelihood loss was
proposed to enable semi-supervised learning for DPFs, which
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aims to improve the performance of DPFs when only a small
portion of data are labeled.

B. Conditional Density Estimation via Conditional
Normalizing Flows

Normalizing flows are a family of invertible mappings
transforming probability distributions. A simple base
distribution can be transformed into arbitrarily complex
distribution using normalizing flows under mild
assumptions [21]. Since the transformation is invertible,
it is straightforward to evaluate the density of the transformed
distribution by applying the change of variable formula.

One application in which normalizing flows is particularly
well suited is density estimation [5], [21], [22]. Denote by
p(y) a probability distribution defined on Y ⊆Rdy and T (·) :
Rdy → Rdy a normalizing flow. By applying the normalizing
flow T (y), the probability density p(y) can be evaluated as:

p(y)=pZ
(
T (y)

)∣∣∣∣det
∂T (y)
∂y

∣∣∣∣, (9)

where pZ(·) is a base distribution [21], and
∣∣det∂T (y)

∂y

∣∣ is
the absolute value of the determinant of the Jacobian matrix
∂T (y)
∂y evaluated at y. As a special case of density estimation,

conditional density estimation (CDE) can be realized by using
variants of normalizing flows, e.g. conditional normalizing
flows (CNFs) [4], [5], [20]. Similar to Eq. (9) and with a
slight abuse of notations, a conditional normalizing flow
T (y,x) :Rdy ×Rdx →Rdy can be constructed to evaluate the
conditional probability density p(y|x):

p(y|x)=pZ
(
T (y,x)

)∣∣∣∣det
∂T (y,x)

∂y

∣∣∣∣, (10)

where x is the variable on which p(y|x) is conditioned.
Compared with non-parametric and other parametric CDE

models, CNFs are efficient and can model arbitrarily complex
conditional densities. They have been employed to estimate
complex and high-dimensional conditional probability
densities [4], [5], [9], [23]. Therefore, we choose to use CNFs
to construct the measurement model in DPFs.

III. DIFFERENTIABLE PARTICLE FILTER WITH CON-
DITIONAL NORMALIZING FLOW MEASUREMENT MODEL

We provide in this section the details of the proposed
method and a generic DPF framework where our measurement
model is incorporated. The proposed measurement model is
built based on conditional normalizing flows, which can model
expressive and valid probability densities and capture the
complex likelihood of observations given state information.

A. Likelihood Estimation with Conditional Normalizing Flows

Consider an SMC model where we have an observation
yt and a set of particles {xit}

Np

i=1 at the t-th time step. The
proposed measurement model estimates the likelihood of yt

given xi
t by:

p(yt|xit;θ)=pZ(Tθ(yt,xit))
∣∣∣∣det

∂Tθ(yt,xi
t)

∂yt

∣∣∣∣, (11)

Algorithm 1 A generic differentiable particle filter with
conditional normalizing flow measurement model (DPF-CM)
framework. [Np] is used to denote the set {1, 2, ··· , Np}.

1: Initialize the parameter set θ and set learning rate γ;
2: while θ has not converged do
3: Draw samples {xi0}

Np

i=1∼π(x0);
4: Set importance weights wi

0=
1
Np

for i∈ [Np];
5: Set x̃i0=xi0 for i∈ [Np];
6: for t=1,2,...,T do
7: Sample xit from proposal distribution for i∈ [Np]:

xi
t=fθ(x̃i

t−1,yt,at,βi
t)∼q(xi

t|x̃
i
t−1,yt,at;θ);

8: [optional:] Encode observation: yt :=Eθ(yt);
9: Apply conditional normalizing flows: zit=Tθ(yt,xit);

10: Estimate observation likelihood for i∈ [Np]:

p(yt|xi
t;θ)=pZ(zit)

∣∣∣∣det ∂zit
∂yt

∣∣∣∣;
11: Calculate importance weights for i∈ [Np]:

wi
t=wi

t−1
p(yt|x

i
t;θ)p(xit|x̃

i
t−1,at;θ)

q(xit|x̃it−1,yt,at;θ)
;

12: Normalize weights wi
t=

wi
t∑Np

m=1w
m
t

for i∈ [Np];

13: Resample {xit,wi
t}

Np

i=1 to obtain {x̃i
t,

1
Np
}Np

i=1;
14: end for
15: Calculate the loss function Loverall;
16: Update θ by gradient descent: θ←θ−γ∇θLoverall .
17: end while

where Tθ(yt,xit) is a parameterized conditional normalizing
flow. The base distribution pZ(·) can be user-specified and
is often chosen as a simple distribution such as isotropic
Gaussian.

In scenarios where the observations are high-dimensional
such as images, evaluating Eq. (11) with the raw observations
yt can be computationally expensive. As an alternative solu-
tion, we can map the observation yt to a lower-dimensional
space via et = Eθ(yt) ∈ Rde , where Eθ is a parameterized
function Eθ(·) : Rdy → Rde . Assume that the conditional
probability density p(et|xi

t; θ) of observation features given
state is an approximation of the actual measurement likelihood
p(yt|xit;θ), we then estimate p(yt|xit;θ) with p(et|xit;θ):

p(yt|xit;θ)≈p(et|xit;θ) (12)

=pZ(Tθ(et,xit))
∣∣∣∣det

∂Tθ(et,xit)
∂et

∣∣∣∣. (13)

B. Numerical Implementation

We provide in Algorithm 1 a DPF framework where the
proposed measurement model is applied, which we name as
differentiable particle filter with conditional normalizing flow
measurement model (DPF-CM).

IV. EXPERIMENT RESULTS

In this section, we compare the performance of the proposed
measurement model with other measurement models used in
several state-of-the-art works on DPFs [16], [17], [19] in a syn-
thetic visual tracking task introduced in [24], [25]. Two base-
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lines are used in this experiment, including the vanilla differ-
entiable particle filter (DPF) and the conditional normalizing
flow differentiable particle filter (CNF-DPF) [20]. We name
the two baselines equipped with the proposed measurement
model as the DPF-CM and the CNF-DPF-CM, respectively2.

A. Experiment Setup
The goal of this visual tracking problem is to track the

location of a moving red disk. There are two key challenges
in this experiment. Firstly, there are 25 distracting disks in
observation images, and the distractors move as well while we
try to locate the targeted red disk. Secondly, since collisions
are not considered in this environment, the red disk may be
occluded by distractors or move out of the boundary. The
color of these distractors are randomly drawn from the set
of {green, blue, cyan, purple, yellow, white}, and the radii
of them are randomly sampled with replacement from {3, 4,
··· , 10}. The radius of the tracking objective is set to be 7.
Note that the locations of the disks, including the target and
distractors, are initialized following a uniform distribution
over the observation image. The initial velocity of the disks
are sampled from a standard Gaussian distribution. Figure 1
shows an example of the observation image at time step t=0,
which is an RGB image with the dimension 128×128×3.

Fig. 1. An observation image in the disk tracking experiment. The goal is
to track the red disk among distractors.

With a slight abuse of notations, in this example, we denote
by xt the location of the red disk at the t-th time step, and at

the action. The velocity of the red disk at the t-th time step
and the dynamic of the targeted red disk can be described as
follows [24]:

ât=at+ϵt, ϵt
i.i.d∼ N (0, σ2

ϵ I), (14)

xt+1=xt+ât+αt, αt
i.i.d∼ N (0, σ2

αI), (15)

where I is the identity matrix, ât is the noisy action obtained
by adding random action noise ϵt, σϵ = 4 is the standard
deviation of the action noise, and αt is the dynamic noise
whose standard deviation is σα = 2. The distractors follow
the same dynamic presented above.

We model the prior distribution pZ(·) as a standard Gaussian
distribution N (0, I). We choose to use the conditional Real-
NVP model [5] to construct conditional normalizing

2Code to reproduce the experiment results is available at: https:
//github.com/xiongjiechen/Normalizing-Flows-DPFs.
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Fig. 2. A boxplot that shows test RMSEs of different methods evaluated
at specified time steps. The test set consists of 50 different trajectories,
each with 50 time steps. Data points in the boxplot are generated from 5
simulation runs with different random seeds.

flow Tθ(·). An optimal transport map-based resampling
approach [18] is adopted for the resampling step in Line 13 of
Algorithm 1. For the proposal distribution q(xit|x̃

i
t−1,yt,at;θ),

we follow the setup in [20] where the proposed particles are
generated through conditional normalizing flows.

We optimized the DPFs end-to-end by minimizing a loss
function Loverall which consists of LRMSE, the root mean square
error (RMSE) between the prediction and the ground truth, and
LAE, the autoencoder reconstruction loss w.r.t observations:

Loverall=LRMSE+LAE, (16)

LRMSE=

√√√√ 1

T

T∑
t=0

||x̂t−x∗t ||22, (17)

LAE=
1

T

T∑
t=0

||Dθ(Eθ(yt))−yt||22. (18)

In Eqs. (16), (17), and (18), T is the number of time steps,
|| · ||2 denotes the L2 norm, x∗

t is the ground truth state
at the t-th time step, x̂t =

∑Np

i=1 w
i
txit is an estimation of

Ep(xt|y1:t)[xt], and Dθ(·) and Eθ(·) are respectively the
decoder and the encoder of an autoencoder where the latent
variable et=Eθ(yt) is a 32-dimensional vector.

B. Experiment results

In reporting and discussing the experiment results with
Fig. 2, Fig. 3 and Table I, we adopt the following naming
convention to denote the proposed method and the compared
algorithms – “DPF” refers to a baseline DPF [19]; the
prefix “CNF-” refers to the approach introduced in [20]
where conditional normalizing flows are used to construct
dynamic models and proposal distributions; the suffix “-COS”
represents the measurement model proposed in [19] which
considers the cosine similarity between encoded features
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Fig. 3. Validation RMSE of different approaches during the training process.
The validation set consisting of 50 different trajectories of length 50. The
error bar represents the 95% confidence interval of validation RMSE among
5 simulation runs.

as the likelihood; the suffix “-NN” is used to denote the
measurement model introduced in [16], [17], which outputs
the likelihood via a neural network with encoded features as
its input; “-CM” denotes the proposed measurement model.

Fig. 2 compares RMSEs of state predictions from different
methods on the test set. It can be observed that the DPFs
with the proposed measurement model, i.e. the DPF-CM and
CNF-DPF-CM, exhibit the lowest RMSEs. The overall test
RMSEs averaged across 50 time steps are reported in Table I,
which shows that both the DPF-CM and CNF-DPF-CM
produce the smallest overall test RMSEs. In addition, Fig. 3
plots the validation RMSEs recorded during the training
phase. The proposed measurement model leads to faster
convergence and the smallest validation RMSEs.

TABLE I
THE COMPARISON OF THE OVERALL AVERAGE RMSE ON THE TEST SET

BETWEEN DIFFERENT APPROACHES, THE STANDARD DEVIATION IS
CALCULATED THROUGH 5 SIMULATION RUNS.

Method RMSE Method RMSE
DPF-COS 10.61±2.22 CNF-DPF-COS 5.87±0.83
DPF-NN 4.26±0.32 CNF-DPF-NN 4.19±0.31
DPF-CM 2.99±0.13 CNF-DPF-CM 2.86±0.10

V. CONCLUSION

We propose in this paper a novel measurement model
for differentiable particle filters. The proposed measurement
model employs conditional normalizing flows to construct
flexible and valid probability densities for likelihood estima-
tion that can be embedded into existing DPF frameworks. A
numerical implementation of the proposed method is provided
in the paper, and we evaluate the performance of the proposed
method in a visual disk tracking task. Numerical results show
that the proposed method can significantly improve the track-
ing performance compared with state-of-the-art DPF variants.
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