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Abstract—Training a robust tracker of objects (such as vehicles
and people) using audio and visual information often needs a
large amount of labelled data, which is difficult to obtain as
manual annotation is expensive and time-consuming. The natural
synchronization of the audio and visual modalities enables the
object tracker to be trained in a self-supervised manner. In this
work, we propose to localize an audio source (i.e., speaker) using
a teacher-student paradigm, where the visual network teaches the
audio network by knowledge distillation to localize speakers. The
introduction of multi-task learning, by training the audio network
to perform source localization and semantic segmentation jointly,
further improves the model performance. Experimental results
show that the audio localization network can learn from visual
information and achieve competitive tracking performance as
compared to the baseline methods that are based on the audio-only
measurements. The proposed method can provide more reliable
measurements for tracking than the traditional sound source
localization methods, and the generated audio features aid in
visual tracking.

Index Terms—knowledge distillation, audio localization, multi-
task learning

I. INTRODUCTION

Localizing multiple speakers simultaneously plays a key role
in many civilian applications such as speech recognition [1],
human-computer interaction [2], and speaker diarization [3].
Audio and visual signals, as two important modalities, can
provide complementary information to improve localization
robustness and accuracy [4]. For example, if speakers are
occluded or disappear from the camera field of view, they
can be localized using audio signals; if the audio information
is corrupted by background noise and room reverberation,
visual data can be used to locate and detect the speakers. Thus
information of multiple modalities can work jointly to improve
the localization performance. However, the information of the
two modalities is not always available concurrently, and thus
a good localization system should perform robustly when one
modality is missing.

In this paper, we consider the scenario where the visual
modality is missing and the audio signal is used to localize
speakers. There are several traditional sound source localization
methods such as Global Coherence Field (GCF) [5] and
MUltiple SIgnal Classification (MUSIC) [6]. With the deep
learning methods thriving, some works [7] [8] tackle this
problem by training an audio network. However, these works
need large amount of annotated training data, which are hard

to obtain. For example, datasets in audio speaker localization
such as AV16.3 [9] and AVDIAR [3] have only few annotated
sequences. The teacher-student paradigm enables the use of
a large-scale unlabeled dataset [10] and avoids the need for
manual annotation, which is expensive and time-consuming.
This paradigm often requires the teacher network to extract
pseudo labels and the student network to match the extracted
labels. The teacher networks are often selected as pre-trained
models, which offer good performance. Compared to the
teacher networks, the student networks used often have more
light-weighted architectures.

In recent works, audio was used in semantic segmentation
[11], depth perception [12], and acoustic scene classification
[10] guided by the teacher modality. Inspired by these works,
recently, audio has also been used in speaker detection and
localization [13], and vehicle localization [14] [15] following
the teacher-student paradigm. Compared to audio modality,
visual modality is more informative and has the capability of
localizing objects accurately in 2D or 3D spaces [16] using
color histogram or pretrained face detector, which can teach
the audio modality through knowledge distillation. We train
an audio network as the student network to track the speakers,
guided by visual network (i.e. the teacher network).

Semantic segmentation aims to predict the class labels for
each pixel of an image, such as the methods presented in [17],
[18] and [19]. Using knowledge-distillation to teach audio
network to perform the semantic segmentation task has been
explored recently [11] [12]. In the well-known MOT Challenge,
one of the tasks, MOTS, combines the tasks of tracking and
segmentation [20]. The setting of multi-task shows that the
performance of the sub-tasks can be improved via joint training
of multiple similar tasks [12]. We hypothesize that joint training
for audio localization and audio semantic segmentation could
potentially improve the localization performance as classifying
pixels belonging to speakers also need the model to infer the
positions of the speakers.

If reliable measurements are obtained, Bayesian-based filters
can be used to track the objects, such as Particle filter (PF) [21]
which is a sequential Monte Carlo algorithm approximating the
state distribution by a number of random weighted particles
obtained by sequential importance sampling. To demonstrate the
idea, we employ particle filter with measurements generated by
audio network for speaker tracking, however, other multi-target
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tracking algorithms such as probabilistic hypothesis density
(PHD) filter [22], Multi-target multi-Bernoulli (MeMBer) filter
[22] and Poisson multi-Bernoulli mixture (PMBM) filter [23]
[24] can also be used.

In this paper, our contributions are two-fold: (1) We propose
a method for speaker localization based on the teacher-student
paradigm where a visual network is used to teach audio network,
allowing us to make use of unlabeled data e.g. as in AV16.3
dataset [9]; (2) We use multi-task learning to further improve
the localization accuracy. Compared to the traditional source
localization methods, the proposed method can provide more
accurate measurements. This method can also improve the
tracking performance when the visual modality is unavailable.

II. PROPOSED METHODS

We introduce the architecture of the teacher-student network
in Section II-A and the settings of multi-task learning in Section
II-B. The teacher-student network with multi-task learning aims
to generate audio measurements. The particle filter employs
these measurements to estimate the target states, which is
discussed in Section II-C.

A. Teacher-Student Network

The architecture of our model follows the teacher-student
paradigm, which is shown in Figure 1. We select Dual Shot
Face Detector (DSFD) [25] as the teacher network due to its
good performance in detecting human faces. With this detector,
we can get coordinates of face bounding boxes at every time
frame, i.e. bk = [x, y, w, h]T , where k is the time instant, [x, y]
is the top-left coordinate of the bounding box and [w, h] is the
width and height of the bounding box, respectively. Bounding
boxes whose confidence scores are above a predefined threshold
λ are treated as reliable measurements and are converted to
coordinates of mouth position,

ok = W · bk (1)

where ok = (xk, yk) is regarded as the pseudo label for training
the audio network at time k, W = [I,diag(0.5, 0.75)] is the
conversion matrix from face bounding boxes to mouth positions,
as defined in [16].

The audio feature is taken as the input to the student
network. Here, we use Generalized Cross Correlation with
Phase Transform (GCC-PHAT) as the audio feature. The input
will be passed through seven convolutional layers to reduce
the feature dimension and extract high-level features. Each
convolutional layer is followed by MaxPool, ReLU, Dropout
and BatchNorm. As one audio sequence corresponds to three
visual sequences captured from different cameras in the AV16.3
dataset [9], to avoid the network being confused about the
correspondence of the audio-visual sequences, we input the
information of the 2D position of the camera to the network.
The 2D position of the camera is converted from the 3D position
through camera calibration information provided in the AV16.3
dataset [9]. In addition, there are two fully-connected layers
to increase the feature dimension. Finally, two fully-connected
layers are used to infer the mouth position (x̂k, ŷk) of the

(x, y)

Camera position 
vector

7 conv layers

4 linear layers

3 deconv layers

Fig. 1. The architecture of the proposed model. The proposed two tasks have a
shared feature extractor. Then the feature goes through linear layers to regress
the coordinates and deconvolutional layers to fulfil the semantic segmentation.

speaker based on the high-level features. Sigmoid function is
used to normalize (x̂k, ŷk) to avoid a large range of output
values. We employ the MSELoss as the localization loss ζloc
to allow the teacher network to supervise the student network,

ζloc = (xk − x̂k)
2 + (yk − ŷk)

2 (2)

where (xk, yk) is normalized by a Sigmoid function. At the
inference stage, the trained audio network can generate the
coordinates of the speakers with only audio input, which can
be served as audio measurements Z for tracking, discussed in
Section II-C.

B. Multi-Task Learning

We design an auxiliary task to demonstrate that the setting of
multi-task learning can improve the localization performance
of the student network. In this setting, the student network not
only regresses the coordinates of the speaker but classifies the
pixels of the speaker and background. We use a pretrained
model PSPNet [19] to obtain the pseudo labels l of the semantic
segmentation, which has the same size as the input image.

The student network has a separate branch for this auxiliary
task. It has a shared group of convolutional layers for the two
tasks. After extracting features from the convolutional layers,
the network uses three deconvolutional layers to enlarge the
dimension of the feature vector to match with the original
image size. In the AV16.3 dataset, only moving speakers
generate sounds and there are no more other sound sources.
Therefore, we modify the PSPNet, by only outputting the class
related to the speaker while regarding other classes as the
background class. The cross entropy (CE) loss is employed as
the segmentation loss ζseg to supervise the student network:

ζseg = CE(̂l, l) (3)

where l̂ is denoted as the predicted labels for each pixel in the
input image.

The loss function ζ for multi-task learning is the summation
of the localization loss and the segmentation loss:

ζ = ζloc + ζseg (4)
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C. Particle Filter
The aim of particle filter is to estimate the state s =

(x, vx, y, vy) of each speaker with audio measurements, where
(x, y) is the 2D coordinates of the speaker’s mouth location
and (vx, vy) is its corresponding velocity. Particle filter uses
particles p

(i)
t at time step t to represent the state of an object,

where i is the particle index. At the start, every particle shares
the same weight w(i)

0 = 1
N , where N is the total number of

particles. At the prediction stage, the states of the particles are
propagated by:

p
(i)
t = Fp

(i)
t−1 + q

(i)
t (5)

where F is the prediction matrix denoting the velocity-constant
dynamic model and q

(i)
t is the Gaussian noise with zero mean

and covariance Q, q(i)
t ∼ N (0,Q). In the update stage, the

weights of particles are altered by the measurements Zt, which
may come from the audio signal, visual signal or signals of
other modalities, such as LiDAR information [26] and thermal
feature [15],

ω
(i)
t ∝ g

(
Zt | p(i)

t

)
(6)

The measurement likelihood follows Gaussian distribution over
the measurement Zt:

g (Zt | pt) ∝ exp
[
− (Zt − pt)

T
Σ−1 (Zt − pt)

]
(7)

where Σ denotes the covariance, indicating the measurement
reliability.

The updated state of the speaker is the weighted average
over the states of the particles:

st =

N∑
i=1

ω
(i)
t p

(i)
t (8)

The last step is re-sampling, where the particles with large
weights are retained and duplicated for the next time step,
while the particles with small weights are discarded.

III. EXPERIMENTS

We introduce the experimental settings and results of audio
measurements generation and tracking in this section.

A. Dataset
We use the AV16.3 dataset [9], which is recorded with two

8-microphone arrays with a sampling rate at 16 kHz and three
cameras with a sampling rate at 25 fps in an 8.2×3.6×2.4m3

meeting room. People in the room are sitting statically, or
standing statically, or walking back and forth while speaking at
the same time. There are more than 30 sequences in this dataset
and only several sequences are annotated with 2D ground truth
mouth position of the speakers. To our knowledge, this is the
first attempt to use the unlabelled sequences for self-supervised
learning on this dataset. We use all sequences of single speaker,
containing more than 130,000 frames. When using DSFD [25]
to generate pseudo labels for localization, if the frame contains
no speaker (i.e. all output confidences are below the pre-defined
threshold λ), this frame will be discarded. After processing,
we collect 120,417 frames for training and 6,635 for validation.
We use sequences 11 and 12, which have the ground truth
annotations as the test set, provided in [16].

TABLE I
MEASUREMENTS OBTAINED FROM THE DATASET

CDx CDy

Teacher network 1.97 2.82
Global Coherence Field (GCF) 17.31 15.07
Mono mel-spectrogram w/o ml 20.47 7.58
8 mel-spectrogram w/o ml 16.84 7.81
GCC-PHAT w/o ml 14.72 7.52
Ours 14.31 7.39

B. Evaluation Metrics

Following [14] and [15], we also use Center Distance (CD) in
x and y directions, CDx and CDy , to evaluate the localization
performance. Center distance denotes the percentage of the
localization errors (the distance between the predicted position
and the ground truth position of the speaker) in image size.

To evaluate the tracking performance, we use the Optimal
Sub-Pattern Assignment (OSPA) [27], defined as

E(c)
ρ (M,N) = 1

|N|

 min
π∈Π|N|

|M|∑
i=1

d(c)
(
mi, nπ(i)

)ρ
+ cρ (|N| − |M|)

 1
ρ

(9)
where M =

{
m1,m2, ...,m|M|

}
and N =

{
n1, n2, ..., n|N|

}
are two arbitrary finite sets, with |·| being the cardinality
of the set, c > 0 is the cut-off parameter and ρ ≥ 1 is
the order. Π|N| is the set of permutations on {1, 2, ..., |N|}.
d(c)

(
mi, nπ(i)

)
is defined as min(c, ∥mi − nπ(i)∥2). OSPA

finds optimal assignment of points in M and N and calculates
the Euclidean distance of the two matched points. Unmatched
points left in N will result in cardinality error.

C. Implementation Details

To derive the mel-spectrogram, we use the short-time Fourier
transform (STFT) with a window size of 1024, a hop size of 256
and 80 frequency bins. For the i-th image frame, we calculate
mel-spectrogram of 25 consecutive frames [i− 12, i+ 12] in
every audio channel, resulting in 80× 126× 8 dimensions.

We train our student network using Adam optimizer with
64 batch size and a 5e-5 learning rate. The student network is
trained 100 epochs and the early stop mechanism is employed
with a patience of 30. The dropout rate is set to 0.1. In
extracting localization pseudo labels, the threshold λ is set
to 0.5. In semantic segmentation, as the number of pixels of
backgrounds is much larger than that of speakers, there exists
a class imbalance problem. To mitigate this problem, we set
the re-scaling weight of [1.0, 10.0] for the background and the
speaker class in the cross entropy loss.

For tracking, the particle filter is initialized with 100 particles
and we employ uniform clutter distributed in the image plane
with a Poisson rate of 5. For the OSPA, we choose c as 30
and ρ as 2. The detection probability PD is set to 0.98. Every
tracker is tested 10 times and the average results are calculated.
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D. Comparison Methods for Generating Audio Measurements

Teacher model: The mouth position is estimated by the
bounding box generated by DSFD [25] through Equation 1.
Global Coherence Field (GCF): GCC-PHATs of different
microphone pairs are aggregated to form the GCF map in x
and y dimension, and then the peak value in the GCF map is
selected as the estimated location.
Mono mel-spectrogram w/o ml: The mel-spectrogram of the
single audio channel is used as the input to the student network
without the settings of the multi-task learning.
8 mel-spectrogram w/o ml: The mel-spectrograms of eight
audio channels are calculated and stacked together as the
input of the student network without the settings of multi-
task learning.
GCC-PHAT w/o ml: The GCC-PHAT is used as the input
to the student network without the settings of the multi-task
learning.
Ours: The GCC-PHAT is used as the input of the student
network jointly trained for semantic segmentation.

E. Comparison Methods for Tracking

We use the localization results as measurements for the
particle filter to track the speakers. The tracking experiments
are conducted on the same sequences as those in Section III-A.
We make the following comparisons:
GCF: The GCF output is used as measurements (GCF in
Section III-D).
Ours: The output of our purposed method is used (Ours in
Section III-D) as measurements.
Visual Only (VO) Tracking: The measurements are estimated
by Equation 1 according to the bounding box generated by
DSFD [25] (Teacher in Section III-D).
Audio-visual (AV) Tracking: The measurements in Ours and
VO are fused. When the information of visual modality is
not available (e.g. The face detector fails when people are not
facing towards the cameras), the tracker turns to leverage the
audio modality.

F. Analysis of the Quality of the Audio Measurements

The experimental results for the baseline methods and our
proposed methods are listed in Table I. It can be seen that
the teacher network has excellent performance and has the
capability of teaching the student model to localize speakers.
The performance of the student network with mono mel-
spectrogram input is worse than that using eight stacked
mel-spectrogram, which shows that multi-channel signals
provide more positional information and offers more accurate
localization results. In addition, the model using GCC-PHAT
outperforms the model using mel-spectrogram, indicating that
GCC-PHAT is a more powerful feature for localization, as it
detects objects based on the mutual information of different
microphone pairs. Our proposed method outperforms all the
baselines. Compared to GCC-PHAT w/o ml, our model
shows a lower localization error, indicating the effectiveness
of the setting of multi-task learning. As the task of semantic
segmentation requires classifying whether the pixel belongs

TABLE II
OSPA LOCALIZATION ERRORS

Sequence Seq 11 Seq 12 Avg
Camera 1 2 3 1 2 3
GCF 29.63 29.44 28.64 28.52 27.99 27.78 28.67
Ours 23.95 26.89 27.82 26.08 28.41 26.49 26.61
VO 5.72 5.85 4.68 4.27 4.19 3.93 4.77
AV 5.68 5.80 4.63 4.25 4.16 3.91 4.74

Image Ground Truth Output

Fig. 2. The output of semantic segmentation by the audio network.

to the speaker, it also needs the model to learn where the
speaker is. Thus the semantic segmentation task enhances
the performance of the model in speaker localization. As a
by-product of the audio network, we visualize the semantic
segmentation results in Fig. 2.

Compared to the traditional sound source localization method
GCF [16] [28], our proposed data-driven method gives im-
proved performance, showing the advantages of using a large
amount of unlabeled training data.

G. Analysis of Tracking results

The tracking results are demonstrated in Table II. Compared
to GCF, our method can provide more accurate measurements
for tracking, indicating the advantages of leveraging the large
amount of unlabelled data for training.

Compared to VO tracking, the tracker using both visual and
audio modalities has a lower error. When the highest bounding
box confidence is below the pre-defined threshold λ = 0.5, the
tracker turns to use the audio measurements. The measurements
generated by our proposed method can help the tracker avoid
deviating from the trajectory significantly when the video based
face detector has poor detection performance.

IV. CONCLUSION

In this paper, we have presented a self-supervised learning
method for audio speaker localization. The audio network
can learn to localize speakers by matching the pseudo labels
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generated by the teacher model based on video network. The
designed auxiliary semantic segmentation task helped to further
improve the localization accuracy. The measurements generated
by the audio network can benefit visual tracking by serving
as a complementary modality. In future works, we will extend
our work to the multi-speaker tracking scenarios.
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